Как найти потерю напряжения. Расчет необходимого сечения кабеля

При проектировании электросетей с небольшими токами часто проводятся расчет потерь напряжения в проводниках. Полученные результаты затем используются для определения оптимального сечения токоведущих жил. Если во время выбора проводов и кабелей будет допущена ошибка, то электросистема быстро выйдет из строя либо вовсе не запустится. Для проведения необходимых вычислений используются специальные формулы или онлайн-калькуляторы.

Причины потерь

Каждый электрик знает, что кабеля состоят из жил. Они изготавливаются из меди либо алюминия и покрыты изоляционным слоем. Для защиты от механических повреждений проводники помещаются в дополнительную полимерную оболочку. Так как токоведущие жилы плотно расположены и сжаты защитным покрытием, при большой протяженности магистрали они начинают работать по принципу конденсатора. Говоря проще, в сердечниках создается заряд, обладающий емкостным сопротивлением.

Схема потери напряжения в проводах имеет следующий вид:

Если этот процесс представить графически, то показателем потерь окажется отрезок AD.

Выполнять такие вычисления вручную довольно сложно и сейчас часто используется онлайн-калькулятор. Потери напряжения, рассчитанные с его помощью, оказываются довольно точными, а погрешность минимальна.

Последствия снижения напряжения

В соответствии с нормативной документацией, потери на магистрали от трансформатора до самой удаленной точки для общественных объектов не должны превышать 9%. Что касается возможных потерь в месте ввода линии к конечному пользователю, то этот показатель должен составлять не более 4%.

В случае отклонения от указанных пределов возможны следующие последствия:

  • Энергозависимое оборудование не сможет нормально функционировать.
  • При низком напряжении на входе возможен отказ в работе электроприборов.
  • Токовая нагрузка не будет распределяться равномерно между потребителями.

К характеристикам ЛЭП предъявляются высокие требования. При их проектировании необходимо рассчитать возможные потери не только в магистральных сетях, но и вторичных.

Для расчета потерь напряжения можно использовать несколько способов. Рассмотреть стоит все, чтобы каждый электрик смог выбрать наиболее привлекательный в зависимости от ситуации.

Применение таблиц и формул

На практике при монтаже электромагистралей используются медные или алюминиевые проводники. Зная показатели удельного сопротивления этих материалов, а также силу тока и сопротивление проводов, можно использовать следующие формулы падения напряжения:

Домашний мастер и даже специалист может воспользоваться специальными таблицами. Это довольно удобный и простой способ проведения необходимых расчетов. Однако в некоторых случаях требуется получить максимально достоверный результат, учитывая показатели активного и реактивного сопротивления. В такой ситуации приходится использовать более сложную формулу:

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Онлайн сервисы

Применение формул, графиков и таблиц является довольно трудоемким процессом. Не всегда необходимо получить максимально точные результаты и в такой ситуации стоит воспользоваться онлайн-калькуляторами. Эти сервисы работают следующим образом:

  • В программу вводятся показатели силы тока, материал проводника, сечение токоведущих жил и длина магистрали.
  • Также потребуется предоставить информацию о количестве фаз, напряжению в сети, мощности и температуре линии во время эксплуатации.
  • После введения всех необходимых данных программа автоматически выполнит все нужные расчеты.

На стадии предварительного проектирования стоит воспользоваться несколькими сервисами и затем определить среднее значение. Следует признать, что определенная погрешность в расчетах при использовании онлайн-калькуляторов присутствует.

Сокращение потерь

Вполне очевидно, что потери зависят от длины проводника в магистрали. Чем этот параметр выше, тем сильнее упадет напряжение. Для сокращения потерь можно использовать несколько методов:

Последний способ отлично работает в электросетях, имеющих несколько резервных линий. Также следует помнить, что напряжение может падать при условии увеличения температуры кабеля. Если во время прокладки кабеля использовать дополнительные мероприятия по теплоизоляции, то потери можно сократить.

В энергетической отрасли расчет падения напряжения на магистрали является одной из важнейших задач. Если все вычисления были проведены грамотно, то у потребителя не возникнет проблем с эксплуатацией электрооборудования.

При передаче электрической энергии по коротким проводам сопротивлением их можно пренебречь. При большей длине их ) сопротивлением проводов пренебрегать нельзя, так как прохождение тока вызовет в них заметное падение напряжения:

Разность напряжений в начале и конце линии (рис. 2-5) , равная падению напряжения в проводах, называется потерей напряжения:

Рис. 2-5. Двухпроводная линия с нагрузкой на конце.

При неизменном напряжении в начале линии напряжение в конце линии, т. е. на приемнике, изменяется от при до при нагрузке.

Колебание напряжения для осветительной нагрузки не должно превышать - а для силовой ±5 и иногда номинального. Поэтому допускаемая потеря напряжения в линии не должна превышать тех же значений.

При заданной допустимой потере напряжения, используя формулу (2-31), можно определить необходимое сечение проводов линии

Найденное по формуле (2-33) сечение должно быть проверено на допустимое нагревание (табл. 2-3).

Мощность потерь в линии определяется произведением потери напряжения и тока, т. е.

Коэффициент полезного действия линии

с увеличением нагрузки уменьшается.

При потерях напряжения 2-5% к. п. д. линии составляет 98-95%.

При передаче электрического тока возможна неравномерная работа потребителей на различных участках цепи. Причин такого явления может быть несколько, и основной из них является падение напряжения.

[ Скрыть ]

Базовые формулы определения напряжения

Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.

Через силу тока и сопротивление

Закон Ома имеет исключения для применения:

  1. При прохождении токов высокой частоты происходит быстрое изменение электромагнитных полей. При расчёте высокочастотных цепей следует учитывать инерцию частиц, которые переносят заряд.
  2. При работе цепей в условиях низких температур (вблизи абсолютного нуля) у веществ может возникать свойство сверхпроводимости.
  3. Нагретый проходящими токами проводник является причиной возникновения переменного сопротивления.
  4. При нахождении под воздействием высокого напряжения проводников или диэлектриков.
  5. Во время процессов, проходящих в устройствах на основе полупроводников.
  6. При работе светодиодов.

Через мощность и силу тока

При известной мощности потребителей и силе тока напряжение высчитывается по формуле U=P/I, где P — мощность в Ваттах, а I — сила тока в Амперах.

При расчётах в цепях переменного тока используется формула иного вида: U=(P/I)*cosφ, где cosφ — коэффициент мощности, зависит от характера нагрузки.

При использовании приборов с активной нагрузкой (лампы накаливания, приборы с нагревательными спиралями и элементами) коэффициент приближается к единице. При расчётах учитывается возможность наличия реактивного компонента при работе устройств и значение cosφ считается равным 0,95. При использовании устройств с реактивной составляющей (электрические двигатели, трансформаторы) принято считать cosφ равным 0,8.

Через работу и заряд

Методика расчёта используется в лабораторных задачах и на практике не применяется.

Формула имеет аналогичный закону Ома вид: U=A/q, где A — выполненная работа по перемещению заряда в Джоулях, а q — прошедший заряд, измеренный в Кулонах.

Расчёт сопротивления

При работе проводник создает препятствие течению электрического тока, которое называется сопротивлением. При электротехнических расчетах применяется понятие удельного сопротивления, которое измеряется в Ом*м.

Последовательное подключение

При последовательном соединении выход элемента связан со входом следующего. Общее сопротивление находится при помощи расчётной формулы: R=R1+R2+…+Rn, где R=R1+R2+…+Rn — значения сопротивления элементов в Омах.

Параллельное подключение

Параллельным называется соединение, при котором оба вывода одного элемента цепи соединены с соответствующими контактами другого. Для параллельного подключения характерно одинаковое напряжение на элементах. Ток на каждом элементе будет пропорционален сопротивлению.

Общее сопротивление высчитывается по формуле: 1/R=1/R1+1/R2+…+1/Rn.

В реальных схемах электропроводки применяется смешанное соединение. Для расчёта сопротивления следует упростить схему, просуммировав сопротивления в каждой последовательной цепи. Затем схему уменьшают путём расчёта отдельных участков параллельного соединения.

Потери напряжения

Потеря напряжения представляет собой расход электрической энергии на преодоление сопротивления и нагревание проводов.

Падение напряжения происходит при работе различных электронных компонентов, например, диодов. Складывается оно из суммы порогового напряжения p-n перехода и проходящего через диод тока, умноженного на сопротивление.

При прохождении тока через резистор также наблюдается падение напряжения. Этот эффект используется для снижения напряжения на отдельных участках цепей. Например, для использования приборов рассчитанных на низкое напряжение в цепях с высоким значением напряжения.

Последовательное включение сопротивления

На схеме приведен пример последовательного включения резистора, который вызывает падение напряжения на лампе с 12 до 7 Вольт. На этом принципе построены регуляторы интенсивности освещения (диммеры).

При эксплуатации проводки с длиной до 10 метров потерями напряжения можно пренебречь.

Потеря напряжения на резисторе и способы замера показаны в видео от канала «Радиолюбитель TV».

К чему приводит потеря напряжения

Потери напряжения в кабельной системе являются причинами ряда негативных явлений:

  • неполноценная и некорректная работа потребителей;
  • повреждение и выход из строя оборудования;
  • понижение мощности и крутящего момента электродвигателей (особенно заметное в момент пуска);
  • неравномерное распределение тока между потребителями на начальном участке и в конце цепи;
  • из-за работы ламп на неполном накале происходит неполное использование мощности тока, что ведет к потерям электроэнергии.

От чего зависит потеря

Потеря напряжения в цепях переменного и постоянного напряжения имеет зависимость от силы тока и сопротивления проводника. При увеличении указанных параметров потери напряжения возрастают. Кроме того, на потерю оказывает влияние конструкция кабелей. Плотность прижатия и степень изоляции проводников в кабеле превращают его в конденсатор, который формирует заряд с ёмкостным сопротивлением.

Потеря напряжения на диодах зависит от типа материала. При использовании германия значение лежит в пределах 0,5-0,7 вольта, на более дешевых кремниевых значение увеличивается и достигает 0,7-1,2 вольта. При этом падение не зависит от напряжения в цепи, а зависит только от силы тока.

К основным причинам потерь тока в магистралях относят:

Ещё одной причиной падения напряжения на линиях является воровство электроэнергии.

В бытовых условиях потери напряжения зависят от ряда факторов:

  • затраты энергии на нагрев проводки из-за повышенного потребления;
  • плохой контакт на соединениях;
  • емкостный и индуктивный характер нагрузки;
  • применение устаревших потребителей.

Причины снижения напряжения изложены в видео от канала ElectronicsClub.

Допустимые значения

Значение потери напряжения относится к регламентированным значениям и нормируется несколькими правилами и инструкциями ПУЭ (Правила устройства электроустановок).

Согласно правилу СП 31-110-2003 суммарное значение потери напряжения от точки ввода в здание до наиболее удалённого потребителя не должно превышать 7,5%. Правило распространяется на электрические сети с рабочим напряжением не выше 400 Вольт. Этот документ принимается в расчёт при проектировке сетей и приёмке и проверке специалистами Ростехнадзора.

Правило СП 31-110-2003 отдельно оговаривает отклонение напряжения в бытовых сетях однофазного тока, которое не должно превышать ±5% при нормальном режиме работы сети и ±10% в послеаварийном. При эксплуатации низковольтных сетей (до 50 Вольт) нормальным является отклонение в пределах ±10%.

Для учёта потерь в кабелях питающей сети применяется инструкция РД 34.20.185-94, которая допускает потери не более 6% при напряжении 10 кВ и не более 4-6% при напряжении 380 Вольт. При этом меньшее значение относится к зданиям с большими потерями во внутридомовой проводке (например, многоэтажные жилые дома с большим количеством подъездов или секций). Большее значение принимается для зданий с малыми внутренними потерями (малоэтажная застройка или многоэтажки с одним или двумя подъездами).

Для одновременного исполнения требований СП 31-110-2003 и РД 34.20.185-94 приходится добиваться снижения потери напряжения до нормы 1,5% (малоэтажные здания) или 2,5% (многоэтажки). При расчёте должны учитываться данные о кабелях, начиная от подстанции и заканчивая подключением к распределительному щиту. На падение напряжения оказывает влияние сечение и материал жил, длина проводки, состояние изоляции.

С начала 2013 года вступил в силу новый стандарт ГОСТ Р 50571.5.52-2011, среди прочего регламентирующий и падение напряжения на сетях до 0,4 кВ. В документе указано, что падение не должно превышать 3% для цепей освещения и 5% для других потребителей. В случае длины проводки более 100 метров падение напряжения может корректироваться на значение 0,005% на каждый метр превышения. При этом максимальный параметр корректировки не может превышать 0,5%.

В документе не указывается, на какую проводку распространяются потери — от распределительного щита до самого удалённого потребителя или от подстанции до конечного светильника. При расчёте сетей стандарт трактуют как касающийся падения напряжения от щита до наиболее удалённой лампы (иначе он полностью противоречит действующим СП 31-110-2003 и РД 34.20.185-94).

На основании описанной выше документации проектировщики стараются добиться падения напряжения внутри здания не более 3% при потере на участке от подстанции до распределительного щита не более 4,5%. Это правило применяется для цепей с напряжением 220В и 380В.

Формулы

Одним из основных параметров для расчёта падения является удельное сопротивление.

Для выполнения проводки от подстанции к распределительному щиту и далее по зданию применяется медный или алюминиевый провод, которые имеют удельные сопротивления:

  • 0,0175 Ом*мм2/м для меди;
  • 0,0280 Ом*мм2/м для алюминия.
  • для определения номинального тока, который будет проходить через проводник: I=P/U, где P — передаваемая мощность (Ватт), а U — номинальное напряжение (Вольт);
  • для определения сопротивления: R=(2*ρ*L)/s, где ρ — удельное сопротивление проводника, s — сечение провода (мм2), а L — длина линии (мм);
  • потеря напряжения в проводе равна: ΔU=(2*I*L)/(γ*s), где L — длина линии (мм), γ — величина, обратная удельному сопротивлению, а s — сечение провода (мм2);
  • по формуле s=(2*I*L)/(γ*ΔU) можно рассчитывать необходимое сечение провода по требуемой нагрузке или производить проверочный расчёт потери.

По известному сечению можно по формулам или таблицам определить диаметр провода, который затем сравнивается с реальным значением.

Падение напряжения на длинных участках сетей однофазного тока можно посчитать по формулам:

Как определить потерю напряжения

В сетях с напряжением до 220в потери можно определить при помощи вольтметра.

  1. Произвести замер в начале цепи.
  2. Выполнить замер напряжения на самом удаленном участке.
  3. Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Вторым способом является расчет по формулам.

Примеры расчётов

Базовым способом расчёта потери мощности может служить онлайн-калькулятор, который проводит расчёты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Образец калькулятора для расчёта потерь

Примером расчёта по формулам для жилого дома может служить задача определения падения напряжения в отдельно взятом помещении. Максимальная расчётная мощность составляет 4 кВт при токе 16 А, проводка выполнена из алюминиевой жилы с сечением 1,5 квадрата и имеет длину 40 метров.

Падение составит: U=(р*L*2)/(s*I)=0.028*40*2/1,5*16=9,33 В. Напряжение с учетом потери составит 220-9,33=210,67 В (или 4,2%). Значение находится на пределе допуска, есть риск работы потребителей с неполной мощностью (особенно в случае просадки основного напряжения 220 В).

При более детальном и точном расчёте необходимо учитывать реактивную и активную составляющие сопротивления и передаваемую мощность. Примером сложного расчёта может служить магистральная линия, выполненная с использованием четырехжильного кабеля СИП. К магистрали подключены четыре ответвления, к которым подключены дачные домики. Коэффициент мощности нагрузки принят как 0,98. Основной кабель СИП2 имеет четыре жилы по 50 мм2, кабель СИП4 для подключения дома имеет две жилы по 16 мм2. Расстояния указаны на схеме.

Схема подключения

Для расчёта необходимо:

  1. Определить погонные сопротивления проводки СИП2 по справочнику: R­­пог=0,641·10-3 Ом/м. Xпог=0,0794·10-3 Ом/м.
  2. Выяснить аналогичные значения для СИП4: Rпог=1,91·10-3 Ом/м. Xпог=0,0754·10-3 Ом/м
  3. Для трёхфазного участка расчёт ведется по формуле: ΔU=((L*(P*Rпог+Q*Xпог))/U2)*100.
  4. Для однофазных ответвлений: ΔU=((2*L*(P*Rпог+Q*Xпог))/U2)*100, где P и Q – расчётная активная мощность линии (Вт), L – длина участка линии (м), Rпог (Xпог) – погонное сопротивление провода (Ом/м), U – номинальное фазное напряжение сети (В).

Поскольку значение Q*Xпог на порядок меньше, чем P·Rпог, то в расчётах им пренебрегают и упрощают формулу до вида: ΔU=((L*P*Rпог)/U2)*100 и ΔU=((2*L*P*Rпог)/U2)*100.

Расчётную мощность на каждом участке определяют по табличным значениям из СП 31-110-2003. При расчётах количества потребителей на промежуточных участках необходимо суммировать их число на ответвлении в конце участка и на следующем.

В приведенном примере между узлами 1 и 2 имеется 34 потребителя энергии (дома). Поскольку в таблицах даны значения только для 24 и 40 домов, то для нашего случая значение вычисляется по линейному графику: Р34=Р24-((34-24)/(40-24))*(Р24-Р40)=0,9-((34-24/(40-24))*(0,9-0,76)=0,81 кВт/дом.

По полученному значению мощности ведется расчёт потери напряжения на каждом участке.

Таблица с частыми значениями

Существуют таблицы для определения потери напряжения (процентов при передаче одного киловатта на один километр) в зависимости от материала жилы, сечения и коэффициента реактивной мощности.

Ниже приведен пример таблицы для магистрального алюминиевого провода в трёхфазной линии передач.

Сечение, мм2 1,02 0,88 0,75 0,62 0,53 0,48 0,36 0,28
16 1,62 1,58 1,55 1,52 1,50 1,49 1,46 1,44
25 1,13 1,10 1,07 1,03 1,02 1,00 0,97 0,96
35 0,87 0,84 0,81 0,78 0,76 0,75 0,72 0,70

По таблице видно, что по мере падения коэффициента реактивной мощности происходит снижение потери. Дополнительно снижает потерю увеличение сечения проводника.

Другой вариант таблицы для однофазной и трёхфазной сетей для электродвигателей и освещения.

Сечение, мм2 Сечение, мм2 Питание 1 фаза в установившемся режиме Питание 1 фаза в момент пуска Освещение 1 фаза Питание 3 фазы в установившемся режиме Питание 3 фазы в момент пуска Освещение 3 фазы
Медь Алюминий Косинус 0,8 Косинус 0,35 Косинус 1,0 Косинус 0,8 Косинус 0,35 Косинус 1,0
1,5 24,0 10,6 30,0 20,0 9,4 25,0
2,5 14,4 6,4 18,0 12,0 5,7 15,0
4,0 9,1 4,1 11,2 8,0 3,6 9,5
10,0 16,0 3,7 1,7 4,5 3,2 1,5 3,6
16,0 25,0 2,36 1,15 2,8 2,05 1,0 2,4
25,0 35,0 1,5 0,75 1,8 1,3 0,65 1,5
50,0 70,0 0,86 0,47 0,95 0,75 0,41 0,77

Например, трёхфазный двигатель работает при токе 100 А и напряжении 400 В, но в момент пуска потребляет до 500 А. При различных условиях работы косинус φ будет составлять 0,8 или 0,35. Для питания двигателя проложен провод длиной 50 метров с сечением 35 квадратов. При нормальных условиях на трёхфазной сети потери составляют один вольт на километр проводки (из таблицы).

В нашем случае потеря составит 1в*0,05км*100а=5 вольт. В момент пуска на щите наблюдается просадка напряжения в пределах 10 в. Таким образом суммарное падение достигнет 15 вольт, что составляет 3,75%. Значение лежит в пределах допуска ПУЭ и такая цепь применима к эксплуатации.

Выбор кабеля

Для выбора кабеля по нагреву и падению напряжения можно применять готовые онлайн-калькуляторы.

Один из калькуляторов

Возможен способ расчёта по формулам, но он применяется при проектировании проводки для крупных жилых домов и промышленных помещений.

Производя расчет потерь электроэнергии в кабеле, важно учитывать его длину, сечения жил, удельное индуктивное сопротивление, подключение проводов. Благодаря этой справочной информации вы сможете самостоятельно произвести расчет падения напряжения.

Виды и структура потерь

Даже самые эффективные системы электроснабжения имеют те или иные фактические потери электроэнергии. Под потерями понимается разница между данной пользователям электрической энергией и по факту пришедшей к ним. Это связано с несовершенством систем и с физическими свойствами материалов, из которых они изготовлены.

Самый распространенный вид потерь электроэнергии в электрических сетях связан с потерями напряжения от длины кабеля. Для нормирования финансовых трат и подсчета их действительной величины была разработана такая классификация:

  1. Технический фактор. Он связан с особенностями физических процессов и может изменяться под влиянием нагрузок, условных постоянных затрат и климатических обстоятельств.
  2. Затраты на использование дополнительного снабжения и обеспечение нужных условий для деятельности технического персонала.
  3. Коммерческий фактор. В эту группу входят отклонения из-за несовершенства контрольно-измерительных приборов и прочие моменты, провоцирующие недоучет электрической энергии.

Основные причины появления потери напряжения

Основная причина потери мощности в кабеле -- это потери в линиях электропередач. На расстоянии от электростанции до потребителей не только рассеивается мощность электроэнергии, но и падает напряжение (что при достижении значения меньше минимально допустимого может спровоцировать не только неэффективную работу приборов, но и полную их неработоспособность.

Также потери в электрических сетях могут быть вызваны реактивной составляющей участка электрической цепи, то есть наличием на этих участках любых индуктивных элементов (это могут быть катушки связи и контуров, трансформаторы, дроссели низкой и высокой частот, электродвигатели).

Способы уменьшения потерь в электрических сетях

Пользователь сети не может повлиять на потери в ЛЭП, но может снизить падение напряжения на участке цепи, грамотно подключив ее элементы.

Медный кабель лучше соединять с медным, а алюминиевый -- с алюминиевым. Количество соединений проводов, где материал жилы изменяется, лучше свести к минимуму, так как в таких местах не только рассеивается энергия, но и увеличивается тепловыделение, что при недостаточном уровне теплозоляции может быть пожароопасным. Учитывая показатели удельной проводимости и удельного сопротивления меди и алюминия, более эффективно в плане энергозатрат использовать медь.

Если это возможно, при планировании электрической цепи любые индуктивные элементы, такие как катушки (L), трансформаторы и электродвигатели, лучше подключать параллельно, так как согласно законам физики, общая индуктивность такой схемы снижается, а при последовательном подключении, наоборот, увеличивается.

Еще для сглаживания реактивной составляющей используют конденсаторные установки (или RC-фильтры в совокупности с резисторами).

В зависимости от принципа подключения конденсаторов и потребителя имеется несколько типов компенсации: личная, групповая и общая.

  1. При личной компенсации емкости присоединяют непосредственно к месту появления реактивной мощности, то есть собственный конденсатор -- к асинхронному мотору, еще один -- к газоразрядной лампе, еще один -- к сварочному, еще один -- для трансформатора и т.д. В этой точке приходящие кабели разгружаются от реактивных токов к отдельному пользователю.
  2. Групповая компенсация включает в себя присоединение одного или нескольких конденсаторов к нескольким элементам с большими индуктивными характеристиками. В данной ситуации регулярная одновременная деятельность нескольких потребителей связана с передачей суммарной реактивной энергии между нагрузками и конденсаторами. Линия, которая подводит электрическую энергию к группе нагрузок, разгрузится.
  3. Общая компенсация предусматривает вставку конденсаторов с регулятором в основном щите, или ГРЩ. Он производит оценку по факту текущего потребления реактивной мощности и быстро подсоединяет и отсоединяет нужное число конденсаторов. В результате берущаяся от сети общая мощность приводится к минимуму в согласии с моментальной величиной необходимой реактивной мощности.
  4. Все установки компенсации реактивной мощности включают в себя пару ветвей конденсаторов, пару ступеней, которые образуются специально для электрической сети в зависимости от потенциальных нагрузок. Типичные габариты ступеней: 5; 10; 20; 30; 50; 7,5; 12,5; 25 квар.

Для приобретения больших ступеней (100 и больше квар) соединяют параллельно небольшие. Нагрузки на сети уменьшаются, токи включения и их помехи снижаются. В сетях с множеством высоких гармоник сетевого напряжения конденсаторы защищают дросселями.

Автоматические компенсаторы обеспечивают сети, снабженной ими, такие преимущества:

  • уменьшают загрузку трансформаторов;
  • делают более простыми требования к сечению кабелей;
  • дают возможность загрузить электросети больше, чем можно без компенсации;
  • ликвидируют причины уменьшения напряжения сети, даже когда нагрузка подсоединена протяженными кабелями;
  • увеличивают КПД мобильных генераторов на топливе;
  • упрощают запуск электрических двигателей;
  • увеличивают косинус фи;
  • ликвидируют реактивную мощность из контуров;
  • защищают от перенапряжений;
  • совершенствуют регулировку характеристик сетей.

Калькулятор расчета потерь напряжения в кабеле

Для любого кабеля расчет потерь напряжения можно произвести онлайн. Ниже приведен онлайн-калькулятор потерь в кабеле напряжения.

Калькулятор находится в разработке, в ближайшее время он станет доступным.

Расчет с применением формулы

ΔU, % = (Uн -- U) * 100/ Uн,

Из этого можно вывести формулу расчета потерь электроэнергии:

ΔP, % = (Uн -- U) * I * 100/ Uн,

где Uн -- номинальное напряжение на входе в сеть;

I -- фактический ток сети;

U -- напряжение на отдельном элементе сети (считают потери в процентах от номинала, имеющегося на входе напряжения).

Таблица потерь напряжения по длине кабеля

Ниже приведены приблизительные падения напряжения по длине кабеля (таблица Кнорринга). Определяем необходимое сечение и смотрим значение в соответствующем столбце.

ΔU, % Момент нагрузки для медных проводников, кВт∙м, двухпроводных линий на напряжение 220 В
При сечении проводника s, мм², равном
1,5 2,5 4 6 10 16
1 18 30 48 72 120 192
2 36 60 96 144 240 384
3 54 90 144 216 360 576
4 72 120 192 288 480 768
5 90 150 240 360 600 960

Жилы проводов при течении тока излучают тепло. Размер тока вместе с сопротивлением жил определяет степень потерь. Если иметь данные о сопротивлении кабеля и величине проходящего через них тока, получится узнать сумму потерь в контуре.

Таблицы не принимают во внимание индуктивное сопротивление, т.к. при использовании проводов оно чрезмерно мало и не может равняться активному.

Кто платит за потери электричества

Потери электроэнергии при передаче (если передавать ее на большие расстояния) могут быть существенными. Это влияет на финансовую сторону вопроса. Реактивную составляющую учитывают при определении общего тарифа использования номинального тока для населения.

Для однофазных линий она уже включена в стоимость, учитывая параметры сети. Для юридических лиц эта составляющая рассчитывается независимо от активных нагрузок и в предоставляемом счете указывается отдельно, по особому тарифу (дешевле, чем активная). Делается это ввиду наличия на предприятиях большого количество индукционных механизмов (например, электродвигателей).

Органы энергонадзора устанавливают допустимое падение напряжения, или норматив потерь в электрических сетях. За потери при передаче электроэнергии платит пользователь. Поэтому, с точки зрения потребителя, экономически выгодно подумать о том, чтобы снизить их, изменив характеристики электрической цепи.

Потребители электрической энергии работают нормально, когда на их зажимы подается то напряжение, на которое рассчитаны данный электродвигатель или устройство. При передаче электроэнергии по проводам часть напряжения теряется на сопротивление проводов и в результате в конце линии, т. е. у потребителя, напряжение получается меньшим, чем в начале линии.

Понижение напряжения у потребителя по сравнению с нормальным сказывается на работе токоприемника, будь то силовая или осветительная нагрузка. Поэтому при расчете любой линии электропередачи отклонения напряжений не должны превышать допустимых норм, сети, выбранные по току нагрузки и рассчитанные на нагрев, как правило, проверяют по потере напряжения.

Потерей напряжения ΔU называют разность напряжений в начале и конце линии (участка линии). ΔU принято определять в относительных единицах - по отношению к номинальному напряжению. Аналитически потеря напряжения определена формулой:

где P - активная мощность, кВт, Q - реактивная мощность, квар, ro - активное сопротивление линии, Ом/км, xo - индуктивное сопротивление линии, Ом/км, l - длина линии, км, Uном - номинальное напряжение, кВ.

Значения активного и индуктивного сопротивлений (Ом/км) для воздушных линий, выполненных проводом марки А-16 А-120 даны в справочных таблицах. Активное сопротивление 1 км алюминиевых (марки А) и сталеалюминевых (марки АС) проводников можно определить также по формуле:

где F - поперечное сечение алюминиевого провода или сечение алюминиевой части провода АС, мм 2 (проводимость стальной части провода АС не учитывают).

Согласно ПУЭ («Правилам устройства электроустановок»), для силовых сетей отклонение напряжения от нормального должно составлять не более ± 5 %, для сетей электрического освещения промышленных предприятий и общественных зданий - от +5 до - 2,5%, для сетей электрического освещения жилых зданий и наружного освещения ±5%. При расчете сетей исходят из допустимой потери напряжений.

Учитывая опыт проектирования и эксплуатации электрических сетей, принимают следующие допустимые величины потери напряжений: для низкого напряжения - от шин трансформаторного помещения до наиболее удаленного потребителя - 6%, причем эта потеря распределяется примерно следующим образом: от станции или понизительной трансформаторной подстанции и до ввода в помещение в зависимости от плотности нагрузки - от 3,5 до 5 %, от ввода до наиболее удаленного потребителя - от 1 до 2,5%, для сетей высокого напряжения при нормальном режиме работы в кабельных сетях - 6%, в воздушных- 8%, при аварийном режиме сети в кабельных сетях – 10 % и в воздушных- 12 %.

Считают, что трехфазные трехпроводные линии напряжением 6-10 кВ работают с равномерной нагрузкой, т. е что каждая из фаз такой линии нагружена равномерно. В сетях низкого напряжения из-за осветительной нагрузки добиться равномерного ее распределения между фазами бывает трудно, поэтому там чаще всего применяют 4-проводную систему трехфазного тока 380/220 В. При данной системе электродвигатели присоединяют к линейным проводам, а освещение распределяется между линейными и нулевым проводами. Таким путем уравнивают нагрузку на все три фазы.

При расчете можно пользоваться как заданными мощностями, так и величинами токов, которые соответствуют этим мощностям. В линиях, которые имеют протяженность в несколько километров, что, в частности, относится к линиям напряжением 6-10 кВ, приходится учитывать влияние индуктивного сопротивления провода на потерю напряжения в линии.

Для подсчетов индуктивное сопротивление медных и алюминиевых проводов можно принять равным 0,32-0,44 Ом/км, причем меньшее значение следует брать при малых расстояниях между проводами (500-600 мм) и сечениях провода выше 95 мм2, а большее - при расстояниях 1000 мм и выше и сечениях 10-25 мм2.

Потеря напряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

где первый член в правой части представляет собой активную, а второй - реактивную составляющую потери напряжения.

Порядок расчета линии электропередачи на потерю напряжения с проводами из цветных металлов с учетом индуктивного сопротивления проводов следующий:

1. Задаемся средним значением индуктивного сопротивления для алюминиевого или сталеалюминевого провода в 0,35 Ом/км.

2. Рассчитываем активную и реактивную нагрузки P, Q.

3. Подсчитываем реактивную (индуктивную) потерю напряжения

4. Допустимая активная потеря напряжения определяется как разность между заданной потерей линейного напряжения и реактивной:

5. Определяем сечение провода s, мм2

где γ - величина, обратная удельному сопротивлению (γ = 1/ro - удельная проводимость).

6. Подбираем ближайшее стандартное значение s и находим для него по справочной таблице активное и индуктивное сопротивления на 1 км линии (ro, хо ).

7. Подсчитываем уточненную величину по формуле.

Полученная величина не должна быть больше допустимой потери напряжения. Если же она оказалась больше допустимой, то придется взять провод большего (следующего) сечения и произвести расчет повторно.

Для линий постоянного тока индуктивное сопротивление отсутствует и общие формулы, приведенные выше, упрощаются.

Расчет сетей постоянного тока по потерям напряжения.

Пусть мощность P, Вт, надо передать по линии длиной l, мм, этой мощности соответствует ток

где U - номинальное напряжение, В.

Сопротивление провода линии в оба конца

где р - удельное сопротивление провода, s - сечение провода, мм2.

Потеря напряжения на линии

Последнее выражение дает возможность произвести проверочный расчет потери напряжения в уже существующей линии, когда известна ее нагрузка, или выбрать сечение провода по заданной нагрузке