Массовый коэффициент поглощения рентгеновского излучения. Поглощение рентгеновского излучения веществом

Метод изучения молекулярных структур, т.е. определение положе-ния атомов в молекуле и их природы с помощью рентгеновских лучей, по-лучил название рентгеноструктурный анализ. Для исследования биоло-гических структур могут быть использованы различные явления взаимо-действия рентгеновского излучения с веществом : поглощение, рассеяние и дифракция, инактивация (изменение структуры молекул и функций их составных частей под действием рентгеновского излучения). Метод рас-сеяния и дифракции рентгеновских лучей использует их волновые свойст-ва. Рентгеновские лучи, рассеиваемые атомами, входящими в состав мо-лекул, интерферируют и дают картину - лауэграмму, на которой положе-ние и интенсивности максимумов зависят от положения атомов в молеку-ле и от взаимного расположения молекул. Если молекулы расположены хаотически, например в растворах, то рассеяние не зависит от внутренней структуры молекул, а в основном от их размеров и формы.

Поглощение рентгеновского излучения в веществе сопровождается образованием фотоэлектронов, оже-электронов и испусканием атомами вещества вторичных фотонов

Коэффициент поглощения рентгеновского излучения веществом убывает с увеличением его частоты. Направленный пучок рентгеновских лучей сечением 1 см2, проходя через слой вещества, испытывает ослабление в результате взаимодействия с его атомами. При порядковых номерах элементов 10 - 35 и длине рентгеновских лучей 0 1 - 1 0 им преобладающую роль в процессах ослабления играет истинное поглощение рентгеновских лучей.

Рентгенодиагностика

Распознавание изменений и заболеваний тканей и органов с помощью рентгенографии.

Взаимодействие рентгеновского излучения с биологическими тканями.Рентгетерапия

Рентгенотерапия - это метод лечения различных заболеваний с использованием рентгеновского излучения. Генератором рентгеновских лучей служит специальная рентгеновская трубка с радиоактивным веществом. В основном рентгенотерапия применяется для лечения онкологических заболеваний. Такое лечение основано на том, что ионизирующая радиация обладает способностью губительно воздействовать на клетки, вызывая различные несовместимые с жизнеспособностью клеток мутации, при этом чем активнее происходят процессы размножения и роста, тем сильнее и разрушительнее воздействие излучения.

Следует отметить, что рентгенотерапия используется не только для лечения опухолей, но и для терапии других заболеваний. Такой метод лечения патологии неопухолевого происхождения используется при неэффективности других методов. Чаще всего пациентами в таких случаях становятся люди пенсионного возраста, которым ввиду противопоказаний для применения различных терапевтических процедур назначают курс рентгенотерапии. К преимуществам такого способа лечения относятся минимум противопоказаний, а также противовоспалительный, антиаллергический и обезболивающий эффекты. Кроме того, для лечения неопухолевых заболеваний достаточно низких доз облучения, поэтому характерные «лучевые» побочные последствия у таких пациентов наблюдается редко.

Радиактивность. Основной закон радиактивного распада. Период полураспада. Изотопы, их применение в медецине.

Закон радиоактивного распада характеризуется тем, что за определенное время активность данного изотопа всегда убывает на одну и ту же долю независимо от величины активности.

Использование изотопов в медицине

Сегодня радионуклидные методы исследования и лечения широко применяются в различных областях научной и практической медицины - в онкологии, кардиологии, гепатологии, урологии и нефрологии, пульмонологии, эндокринологии, травматологии, неврологии и нейрохирургии, педиатрии, аллергологии, гематологии, клинической иммунологии и др.

Активность радиоактивного вещества. Единицы измерения.

мера радиоактивности вещества, выраженная числом распадов его ядер в единицу времени; измеряется в кюри (Ки): 1 Ки3 7 - 1010 расп (мкюри, мккюри); А. р. в. учитывается, напр., при выборе радиофармацевтического препарата, при оценке опасности работы с радиоактивным веществом и т. д.

Содержание статьи

ПОГЛОЩЕНИЕ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В ВЕЩЕСТВЕ. При исследовании взаимодействия рентгеновских лучей с веществом (твердым, жидким или газообразным) регистрируется интенсивность прошедшего или дифрагированного излучения. Эта интенсивность интегральна и связана с различными процессами взаимодействия. Чтобы отделить друг от друга эти процессы, используют их зависимости от условий эксперимента и физических характеристик исследуемого объекта.

Эффект рассеяния рентгеновских лучей связан с тем, что силы переменного электромагнитного поля, создаваемого пучком рентгеновских лучей, приводят в колебательное движение электроны в исследуемом материале. Колеблющиеся электроны испускают рентгеновские лучи той же длины волны, что и первичные, при этом отношение мощности лучей, рассеянных 1 г вещества, к интенсивности падающего излучения приближенно составляет 0,2. Этот коэффициент несколько увеличивается для рентгеновских лучей с большой длиной волны (мягкое излучение) и уменьшается для лучей с малой длиной волны (жесткое излучение). При этом сильнее всего рассеиваются лучи в направлении падающего пучка рентгеновских лучей (и в обратном направлении) и слабее всего (в 2 раза) в направлении, перпендикулярном первичному.

Фотоэффект возникает, когда поглощение падающего рентгеновского излучения сопровождается выбросом электронов. После выброса внутреннего электрона происходит возврат к стационарному состоянию. Этот процесс может происходить либо без излучения с выбросом второго электрона (эффект Оже), либо сопровождаться характеристическим рентгеновским излучением атомов материала (см . РЕНТГЕНОВСКИЕ ЛУЧИ). По своей природе это явление аналогично флюоресценции. Рентгеновская флюоресценция может происходить только при воздействии характеристического рентгеновского излучения какого-либо элемента на преграду из более легкого элемента (с меньшим атомным номером).

Суммарное поглощение рентгеновских лучей определяется суммированием всеми видами взаимодействия, ослабляющими интенсивность рентгеновского излучения. Для оценки ослабления интенсивности рентгеновского излучения при прохождении через вещество используют линейный коэффициент ослабления, характеризующий уменьшение интенсивности излучения при прохождении через 1 см вещества и равный натуральному логарифму отношения интенсивностей падающего и прошедшего излучения. Кроме того, как характеристику способности вещества поглощать падающее излучение используют толщину слоя половинного поглощения, т.е. толщина слоя, при прохождении через который интенсивность излучения уменьшается вдвое.

Физические механизмы рассеяния рентгеновского излучения и возникновения вторичного характеристического излучения различны, но во всех случаях зависят от количества атомов вещества, взаимодействующих с рентгеновским излучением, т.е. от плотности вещества, поэтому универсальной характеристикой поглощения является массовый коэффициент поглощения – истинный коэффициент поглощения, отнесенный к плотности вещества.

Коэффициент поглощения в одном и том же веществе падает с уменьшением длины волны рентгеновского излучения, однако при некоторой длине волны происходит резкое увеличение (скачок) коэффициента поглощения, после чего продолжается его уменьшение (рис.). При скачке коэффициент поглощения увеличивается в несколько раз (иногда на порядок) и на разную величину для различных веществ. Возникновение скачка поглощения связано с тем, что при определенной длине волны возбуждается характеристическое рентгеновское излучение облучаемого вещества, что резко увеличивает потери энергии при прохождении излучения. В пределах каждого участка кривой зависимости коэффициента поглощения от длины волны (до и после скачка поглощения) массовый коэффициент поглощения меняется пропорционально кубу длины волны рентгеновского излучения и атомного номера химического элемента (материала преграды).

Когда через вещество проходит немонохроматическое рентгеновское излучение, например, излучение со сплошным спектром, возникает спектр коэффициентов поглощения, при этом коротковолновое излучение поглощается слабее длинноволнового и по мере увеличения толщины преграды результирующий коэффициент поглощения приближается к величине, характерной для коротковолнового излучения. Если вещество состоит из нескольких химических элементов, то суммарный коэффициент поглощения зависит от атомного номера каждого элемента и количества этого элемента в веществе.

Расчеты поглощения рентгеновского излучения в веществе имеют большое значение для рентгенодефектоскопии. При наличии дефекта (например, поры или раковины) в металлической пластине интенсивность прошедшего излучения увеличивается, а при включении из более тяжелого элемента – уменьшается. Зная величину коэффициента поглощения, можно рассчитать геометрические размеры внутреннего дефекта.

Рентгеновские фильтры.

При исследовании материалов с помощью рентгеновского излучения интерпретация результатов усложняется из-за наличия нескольких длин волн. Для выделения отдельных длин волн применяют рентгеновские фильтры, изготовленные из веществ с различным коэффициентом поглощения для различных длин волн, при этом используется тот факт, что рост длины волны излучения сопровождается увеличением коэффициента поглощения. Например, для алюминия коэффициент поглощения рентгеновского излучения К-серии от железного анода (l = 1,932 А), больше, чем для излучения К-серии от молибденового анода (l = 0,708 А) и при толщине алюминиевого фильтра 0,1 мм ослабление излучения от железного анода в 10 раз больше, чем для излучения молибдена.

Наличие скачка поглощения на кривой зависимости коэффициента поглощения от длины волны дает возможность получить селективно- поглощающие фильтры, если длина волны фильтруемого излучения, лежит непосредственно за скачком поглощения. Этот эффект используется для того, чтобы отфильтровать b -составляющую К-серии излучения, которая по интенсивности в 5 раз слабее a -составляющей. Если подобрать соответствующий материал фильтра так, чтобы a и b -составляющие были по разные стороны скачка поглощения, то интенсивность b -составляющей уменьшается еще в несколько раз. Примером может служить задача о фильтрации b -излучения меди, в которой длина волны a -излучения К-серии составляет 1,539, а b -излучения 1,389 А. В то же время на кривой зависимости коэффициента поглощения от длины волны скачок поглощения соответствует длине волны 1,480 А, т.е. находится между длинами волн a и b -излучений меди, в районе скачка поглощения коэффициент поглощения увеличивается в 8 раз, поэтому интенсивность b -излучения оказывается меньше интенсивности a -излучения в десятки раз.

При взаимодействии рентгеновского излучения с твердым телом могут возникать радиационные повреждения структуры, связанные с перемещением атомов. В ионных кристаллах возникают центры окраски, аналогичные явления наблюдаются в стеклах, в полимерах меняются механические свойства. Эти эффекты связаны с выбиванием атомов из равновесных положений в кристаллической решетке. В результате образуются вакансии – отсутствие атомов в равновесных положениях в кристаллической решетке и внедренные атомы, находящиеся в равновесном положении в решетке. Эффект окрашивания кристаллов и стекла под действием рентгеновского излучения является обратимым и в большинстве случаев исчезает при нагреве или длительной выдержке. Изменение механических свойств полимеров при рентгеновском облучении связано с разрывом межатомных связей.

Основным направлением изучения взаимодействия рентгеновского излучения с твердым телом является рентгеноструктурный анализ, с помощью которого исследуют расположение атомов в твердом теле и его изменения при внешних воздействиях.

Рентгеновские спектры бывают двух видов: сплошные и линейчатые. Сплошные спектры возникают при торможении быстрых электронов в веществе антикатода и являются обычным тормозным излучением электронов. Строение сплошного спектра не зависит от материала антикатода. Линейчатый спектр состоит из отдельных линий излучения. Он зависит от материала антикатода и полностью характеризуется им. Каждый элемент обладает своим, характерным для него линейчатым спектром. Поэтому линейчатые рентгеновские спектры называют также характеристическими.

Схему возникновения характеристического рентгеновского излучения можно изобразить следующим образом.

Между рентгеновскими линейными спектрами и оптическими линейчатыми спектрами существует три коренных различия. Во-первых, частота рентгеновского излучения в тысячи раз больше, чем частота оптического излучения. Это означает, что энергия рентгеновского кванта в тысячи раз больше оптического кванта. Во-вторых, рентгеновские спектры различных элементов имеют одинаковую структуру, в то время как структура оптических спектров различных элементов существенно различается. В-третьих, оптические спектры поглощения состоят из отдельных линий, совпадающих с линиями излучения главной серии соответствующего элемента. Рентгеновские спектры поглощения не похожи на рентгеновские спектры испускания: они состоят из нескольких полос с резким длинноволновым краем.


Все эти особенности рентгеновских спектров объясняются механизмом испускания, который находится в полном согласии со строением электронных оболочек. Электрон, падающий на материал антикатода, сталкиваясь с атомами антикатода, может выбить электрон с одной из внутренних оболочек атома. В результате этого получается атом, у которого отсутствует электрон на одной из внутренних оболочек. Следовательно, электроны более внешних оболочек могут переходить на освободившееся место. В результате этого испускается квант, который и является квантом рентгеновского излучения.

электронами и возмущения со стороны других электронов. При переходе электрона на освободившееся место на внутренней оболочке с внешней оболочки излучается квант, частота которого

Поскольку Z для тяжелых атомов велико, энергия термов также велика по сравнению с энергией оптических термов. Следовательно, и частоты излучения велики по сравнению с оптическими частотами. Этим объясняется большая энергия рентгеновских квантов.

Поскольку внутренние оболочки атомов имеют одинаковое строение, все тяжелые атомы должны иметь одинаково построенные рентгеновские спектры, лишь у более тяжелых атомов спектр смещается в сторону больших частот.

Это полностью подтверждается экспериментом и доказывает, что внутренние оболочки атомов имеют одинаковое строение, как это и предполагалось при объяснении периодической системы элементов.

В 1913 г. Английский физик Мозли установил закон, связывающий длины волн линий рентгеновского спектра с атомным номером элемента Z. Согласно этому закону:

Здесь R– постоянная Ридберга (R=1,1×10 7 1/м), n– номер энергетического уровня, на который перешел электрон, k– номер энергетического уровня, с которого перешел электрон.

Постоянная sназывается постоянной экранирования. Электроны, совершающие переходы при испускании рентгеновского излучения, находятся под воздействием ядра, притяжение которого несколько ослаблено действием остальных окружающих его электронов. Это экранирующее действие и находит свое выражение в необходимости вычесть из z некоторую величину.

Закон Мозли позволяет определить заряд ядра, зная длину волны линий, характеристического рентгеновского излучения. Именно исследования характеристического рентгеновского излучения позволили расставить окончательно элементы в таблице Менделеева.

Закон Мозли показывает, что корни квадратные из рентгеновских термов зависят линейно от зарядового числа Z элементов.

Если электрон выбит из К-оболочки (n =1), то при переходе на освободившееся место электронов с других оболочек излучается рентгеновская К-серия. При переходе электронов на освободившееся место в L-оболочке (n =2) излучается L-серия и т.д. Таким образом, экспериментально наблюдаемая одинаковость структуры рентгеновских спектров и закон Мозли подтверждают представления, употребляемые при интерпретации периодической системы элементов.

Особенность рентгеновских спектров поглощения также объясняется фактом связи испускания рентгеновского излучения с внутренними оболочками атома. В результате поглощения рентгеновского кванта атомом может произойти вырывание электрона с одной из внутренних оболочек атома, т.е. процесс фотоионизации. Каждая из полос поглощения соответствует вырыванию электрона из соответствующей оболочки атома. Полоса К (рис.9.6.) образуется в результате выбивания электрона из самой внутренней оболочки атома – К-оболочки, полоса L – из второй оболочки и т.д. Резкий длинноволновой край каждой полосы соответствует началу процесса фотоионизации, т.е. вырыванию электрона из соответствующей оболочки без сообщения ему дополнительной кинетической энергии. Длинноволновая часть полосы поглощения соответствует актам фотоионизации с сообщением электрону избыточной кинетической энергии. Структуры рентгеновских спектров поглощения тяжелых элементов аналогичны друг другу и подтверждают одинаковость строения внутренних оболочек атомов тяжелых элементов. На рис.9.7. видно, что каждая из полос поглощения имеет тонкую структуру: в К-полосе есть один максимум, в L-полосе – три максимума, в М-полосе – пять максимумов. Это объясняется тонкой структурой рентгеновских термов.

Если электрон наталкивается на относительно тяжелое ядро, то он тормозится, а его кинетическая энергия выделяется в виде рентгеновского фотона примерно той же энергии. Если же он пролетит мимо ядра, то потеряет лишь часть своей энергии, а остальную будет передавать попадающимся на его пути другим атомам. Каждый акт потери энергии ведет к излучению фотона с какой-то энергией. Возникает непрерывный рентгеновский спектр, верхняя граница которого соответствует энергии самого быстрого электрона. Таков механизм образования непрерывного спектра, а максимальная энергия (или минимальная длина волны), фиксирующая границу непрерывного спектра, пропорциональна ускоряющему напряжению, которым определяется скорость налетающих электронов. Спектральные линии характеризуют материал бомбардируемой мишени, а непрерывный спектр определяется энергией электронного пучка и практически не зависит от материала мишени.

Рентгеновское излучение можно получать не только электронной бомбардировкой, но и облучением мишени рентгеновским же излучением от другого источника. В этом случае, однако, большая часть энергии падающего пучка переходит в характеристический рентгеновский спектр и очень малая ее доля приходится на непрерывный. Очевидно, что пучок падающего рентгеновского излучения должен содержать фотоны, энергия которых достаточна для возбуждения характеристических линий бомбардируемого элемента. Высокий процент энергии, приходящейся на характеристический спектр, делает такой способ возбуждения рентгеновского излучения удобным для научных исследований.

Рентгеновские трубки. Чтобы получать рентгеновское излучение за счет взаимодействия электронов с веществом, нужно иметь источник электронов, средства их ускорения до больших скоростей и мишень, способную выдерживать электронную бомбардировку и давать рентгеновское излучение нужной интенсивности. Устройство, в котором все это есть, называется рентгеновской трубкой. Ранние исследователи пользовались «глубоко вакуумированными» трубками типа современных газоразрядных. Вакуум в них был не очень высоким.

В газоразрядных трубках содержится небольшое количество газа, и когда на электроды трубки подается большая разность потенциалов, атомы газа превращаются в положительные и отрицательные ионы. Положительные движутся к отрицательному электроду (катоду) и, падая на него, выбивают из него электроны, а они, в свою очередь, движутся к положительному электроду (аноду) и, бомбардируя его, создают поток рентгеновских фотонов.

В современной рентгеновской трубке, разработанной Кулиджем, источником электронов является вольфрамовый катод, нагреваемый до высокой температуры. Электроны ускоряются до больших скоростей высокой разностью потенциалов между анодом (или антикатодом) и катодом. Поскольку электроны должны достичь анода без столкновений с атомами, необходим очень высокий вакуум, для чего нужно хорошо откачать трубку. Этим также снижаются вероятность ионизации оставшихся атомов газа и обусловленные ею побочные токи.

Электроны фокусируются на аноде с помощью электрода особой формы, окружающего катод. Этот электрод называется фокусирующим и вместе с катодом образует «электронный прожектор» трубки. Подвергаемый электронной бомбардировке анод должен быть изготовлен из тугоплавкого материала, поскольку большая часть кинетической энергии бомбардирующих электронов превращается в тепло. Кроме того, желательно, чтобы анод был из материала с большим атомным номером, т.к. выход рентгеновского излучения растет с увеличением атомного номера. В качестве материала анода чаще всего выбирается вольфрам, атомный номер которого равен 74.

Конструкция рентгеновских трубок может быть разной в зависимости от условий применения и предъявляемых требований.

Принципы дифракции рентгеновского излучения. Чтобы понять явление дифракции рентгеновского излучения, нужно рассмотреть по порядку: во-первых, спектр рентгеновского излучения, во-вторых, природу кристаллической структуры и, в-третьих, само явление дифракции.

Как уже говорилось выше, характеристическое рентгеновское излучение состоит из серий спектральных линий высокой степени монохроматичности, определяемых материалом анода. С помощью фильтров можно выделить наиболее интенсивные из них. Поэтому, выбрав соответствующим образом материал анода, можно получить источник почти монохроматического излучения с очень точно определенным значением длины волны. Длины волн характеристического излучения обычно лежат в диапазоне от 2,285 для хрома до 0,558 для серебра (значения для различных элементов известны с точностью до шести значащих цифр). Характеристический спектр накладывается на непрерывный «белый» спектр значительно меньшей интенсивности, обусловленный торможением в аноде падающих электронов. Таким образом, от каждого анода можно получить два типа излучения: характеристическое и тормозное, каждое из которых играет по-своему важную роль.

Атомы в кристаллической структуре располагаются с правильной периодичностью, образуя последовательность одинаковых ячеек – пространственную решетку. Некоторые решетки (например, для большинства обычных металлов) довольно просты, а другие (например, для молекул белков) весьма сложны.

Для кристаллической структуры характерно следующее: если от некоторой заданной точки одной ячейки сместиться к соответствующей точке соседней ячейки, то обнаружится точно такое же атомное окружение. И если некоторый атом расположен в той или иной точке одной ячейки, то в эквивалентной ей точке любой соседней ячейки будет находиться такой же атом. Этот принцип строго справедлив для совершенного, идеально упорядоченного кристалла. Однако многие кристаллы (например, металлические твердые растворы) являются в той или иной степени неупорядоченными, т.е. кристаллографически эквивалентные места могут быть заняты разными атомами. В этих случаях определяется не положение каждого атома, а лишь положение атома, «статистически усредненного» по большому количеству частиц (или ячеек).

Дифракция рентгеновского излучения – это коллективное явление рассеяния, при котором роль отверстий и центров рассеяния играют периодически расположенные атомы кристаллической структуры. Взаимное усиление их изображений при определенных углах дает дифракционную картину, аналогичную той, которая возникла бы при дифракции света на трехмерной дифракционной решетке.

Рассеяние происходит благодаря взаимодействию падающего рентгеновского излучения с электронами в кристалле. Вследствие того, что длина волны рентгеновского излучения того же порядка, что и размеры атома, длина волны рассеянного рентгеновского излучения та же, что и падающего. Этот процесс является результатом вынужденных колебаний электронов под действием падающего рентгеновского излучения.

Рассмотрим теперь атом с облаком связанных электронов (окружающих ядро), на который падает рентгеновское излучение. Электроны во всех направлениях одновременно рассеивают падающее и испускают собственное рентгеновское излучение той же длины волны, хотя и разной интенсивности. Интенсивность рассеянного излучения связана с атомным номером элемента, т.к. атомный номер равен числу орбитальных электронов, которые могут участвовать в рассеянии. (Эта зависимость интенсивности от атомного номера рассеивающего элемента и от направления, в котором измеряется интенсивность, характеризуется атомным фактором рассеяния, который играет чрезвычайно важную роль в анализе структуры кристаллов.)

Выберем в кристаллической структуре линейную цепочку атомов, расположенных на одинаковом расстоянии друг от друга, и рассмотрим их дифракционную картину. Уже отмечалось, что рентгеновский спектр складывается из непрерывной части («континуума») и набора более интенсивных линий, характеристических для того элемента, который является материалом анода. Допустим, мы отфильтровали непрерывный спектр и получили почти монохроматический пучок рентгеновского излучения, направленный на нашу линейную цепочку атомов. Условие усиления (усиливающей интерференции) выполняется, если разность хода волн, рассеянных соседними атомами, кратна длины волны. Если пучок падает под углом a 0 к линии атомов, разделенных интервалами a (период), то для угла дифракции a разность хода, соответствующая усилению, запишется в виде

a (cos a – cosa 0) = hl ,

где l – длина волны, а h – целое число.

Чтобы распространить этот подход на трехмерный кристалл, необходимо лишь выбрать ряды атомов по двум другим направлениям в кристалле и решить совместно полученные таким образом три уравнения для трех кристаллических осей с периодами a , b и c . Два других уравнения имеют вид

Это – три фундаментальных уравнения Лауэ для дифракции рентгеновского излучения, причем числа h , k и c – индексы Миллера для плоскости дифракции. Рассматривая любое из уравнений Лауэ, например первое, можно заметить, что, поскольку a , a 0, l – константы, а h = 0, 1, 2, ..., его решение можно представить в виде набора конусов с общей осью a (рис. 5). То же самое верно для направлений b и c .

В общем случае трехмерного рассеяния (дифракция) три уравнения Лауэ должны иметь общее решение, т.е. три дифракционных конуса, расположенных на каждой из осей, должны пересекаться; общая линия пересечения показана на рис. 6. Совместное решение уравнений приводит к закону Брэгга – Вульфа:

l = 2(d /n )sinq ,

где d – расстояние между плоскостями с индексами h , k и c (период), n = 1, 2, ... – целые числа (порядок дифракции), а q – угол, образуемый падающим пучком (а также и дифрагирующим) с плоскостью кристалла, в которой происходит дифракция.

Анализируя уравнение закона Брэгга – Вульфа для монокристалла, расположенного на пути монохроматического пучка рентгеновского излучения, можно заключить, что дифракцию непросто наблюдать, т.к. величины l и q фиксированы, а sinq < 1. При таких условиях, чтобы имела место дифракция для рентгеновского излучения с длиной волны l , плоскость кристалла с периодом d должна быть повернута на правильный угол q . Для того чтобы реализовать это маловероятное событие, применяются различные методики.

Рассеяние и поглощение рентгеновского излучения .

Рентгеновское излучение возникает при бомбардировке быстрыми электронами металлической мишени анода (антикатод ). Из опытов Баркла это излучение поперечно поляризовано. Опыты Брэгга, Лауэ, Фридриха, Книппинга, а также Дебая и Шерера показали, что рентгеновское излучение, так же как свет, имеет электромагнитное происхождение. Однако рентгеновское излучение характеризуется гораздо меньшими длинами волн. Рентгеновское излучение занимает спектральную область между гамма и ультрафиолетовым излучением в диапазоне длин волн от до см. Источники рентгеновского излучения - рентгеновские трубки,

Солнце и другие космические объекты. Два типа рентгеновского излучения: тормозное ихарактеристическое .

Тормозное излучение возникает вследствие замедления электронов в мишени и не зависит от вещества мишени. Спектр тормозного излучения сплошной. С увеличением длины волны интенсивность тормозного излучения после максимума монотонно ослабевает. Со стороны коротких длин волн интенсивность резко обрывается коротковолновая граница (квантовый предел )тормозного излучения. Энергия кванта излучения будет максимальной, если вся энергия тормозящегося в мишени электрона eV тратится на излучение:

. (3.48)

С увеличением ускоряющего напряжения на фоне сплошного спектра, начиная с некоторого критического значения, возникают резкие максимумы. Их положение зависит от вещества мишени. Эти максимумы связывают с характеристическим рентгеновским излучением. Оно имеет дискретный спектр. Характеристическое излучение также группируется в спектральные серии.Их обозначение: Ксерия, Lсерия, Мсерия и т.д. Свойства характеристического изл:

I. Характеристическое излучение имеет небольшое число линий;

II. Наблюдается монотонное смещение в коротковолновую часть спектра;

III. Характеристическое излучение является чисто атомным свойством вещества.

IV. Отсутствует обращение спектральных линий. Если пропускать сплошное рентгеновское излучение через вещество, то наблюдаются полосы поглощения.

По интерпретации Косселя (1917) характеристическое излучение происходит в два этапа:

1) бомбардирующий мишень электрон выбивает из атома электрон с какой-то внутренней оболочки. В оболочке образуется «дырка»;

2) электроны атома с верхних уровней переходят на уровень с «дыркой». Избыток энергии при этом освобождается в виде рентгеновского излучения - возникают K, L, M, N серии.

Ксерия самая коротковолновая: . Все линии имеют тонкую структуру. Линии Ксерии являются дублеты: .

С увеличением энергии электронов, сталкивающихся с

мишенью, появляются линии длинноволновых серий, и в последнюю очередь возникают линии Ксерии. Наименьшее значение ускоряющей разности потенциалов, при котором в характеристическом спектре появляются линии некоторой серии - критический потенциал возбуждения серия имеет 5 критических потенциалов возбуждения, Lсерия 3, Ксерия 1 . Потенциал возбуждения Ксерии - потенциал ионизации атома. Если возбуждается Ксерия, то одновременно возникают все остальные серии данного элемента.



Мозли - частота линий рентгеновского излучения определяется формулой бальмеровского типа. В частности, частота линии равна: . (3.49)

Z – 1 эффективный заряд ядра, который экранирован одним из электронов Кслоя.

для линии , где a – постоянная экранирования. Закон Мозли (рис.3.20): ,

постоянные.

При прохождении слоя вещества толщиной х интенсивность параллельного пучка рентгеновского излучения ослабляется по закону: , (3.50)

k – коэффициент ослабления . Ослабление излучения происходит из-за рассеяния ,; из-за поглощения (абсорбции ) , , (3.50а)

коэффициент истинного поглощения, коэффициент рассеяния рентгеновских лучей.

Часто пользуются массовыми коэффициентами: (3.50б)

– плотность вещества.

Используются также атомные коэффициенты:

, (3.50в)

Рассеяние излучения вызывается неоднородностями cреды и флуктуациями ее плотности. В случае мягкого рентгеновского излучения , когда его длина волны велика, атом рассеивает как целое падающее излучение. Рассеяние когерентно - падающее и рассеянное излучения характеризуются одной и той же частотой. Это томсоновское рассеяние , сечение которого определяется классическим радиусом электрона.

В случае жесткого рентгеновского излучения рассеяниестановится некогерентным .Эксперименты Комптона показали, что наряду со смещенной линией рассеяния наблюдается несмещенная линия. Ее возникновение связано с когерентным рассеянием излучения атомом как целого.

Спектр поглощения рентгеновского излучения составляют полосы. Поглощение рентгеновского излучения не зависит от оптических свойств вещества. В пределах полосы поглощения коэффициент поглощения рентгеновских фотонов с энергией от до эВ монотонно убывает в соответствии с приближенной формулой

, (3.53) – эмпирическая постоянная. «Зазубренность» краев полосы: каждая серия, кроме К–серии, имеет несколько критических потенциалов. По значениям этих краев находят энергию связи электронов в слоях и оболочках атомов.

Поглощение рентгеновского излучения может сопровождаться как ионизацией атомов,так и испусканием излучения более низкой частоты. Поэтому коротковолновое излучение обладает большой проникающей способностью (жесткое излучение).Мягкое рентгеновское излучение очень сильно поглощается почти всеми веществами.

В 1925 г. Оже изучал процесс возникновения электронов при поглощении жесткого рентгеновского излучения атомами криптона. Оже обнаружил, что иногда из одной точки выходят следы двух, а не одного электрона. Это Оже–эффект. Механизм возникновения второго, Оже–электрона: Воздействие кванта жесткого рентгеновского излучения на атом приводит к выбросу из него электрона из К-слоя, в котором образуется «дырка». Атом становится ионизованным и сильно возбужденным. Освобождение его энергии в виде рентгеновского излучения не единственный механизм. Энергия возбуждения атома столь высока, что возможен вылет из него второго электрона с L–слоя, причем без излучения кванта . Энергия Оже–электрона еV определяется законом сохранения энергии:

, (3.54)

– энергия фотона, который мог бы излучиться, –энергия ионизации L–электрона. В атоме происходит внутреннее перераспределение энергии, называемое внутренней конверсией, приводящее к выбросу из него Оже–электрона. Атом становится двукратно ионизованным. Оже–эффект рассматривается как проявление общего процесса автоионизации возбужденного атома. Особенно сильно этот эффект проявляется в случае запрещенных электромагнитных переходов.

При прохождении рентгеновских лучей через вещество их энергия уменьшается из-за поглощения и рассеяния. Ослабление интенсивности параллельного пучка рентгеновских лучей, проходящих через вещество, определяется законом Бугера: I = I0·e -μd , где I 0 - начальная интенсивность рентгеновского излучения; I - интенсивность рентгеновских лучей, прошедших через слой вещества, d – толщина поглощающего слоя, μ - линейный коэффициент ослабления. Он равен сумме двух величин: t - линейного коэффициента поглощения и σ - линейного коэффициента рассеяния: μ = τ+σ

В экспериментах обнаружено, что линейный коэффициент поглощения зависит от атомного номера вещества и длины волны рентгеновских лучей:

τ = kρZ 3 λ 3 , где k - коэффициент прямой пропорциональности, ρ - плотность вещества, Z – атомный номер элемента, λ - длина волны рентгеновских лучей.

Зависимость от Z очень важна с практической точки зрения. Например, коэффициент поглощения костей, которые состоят из фосфата кальция, почти в 150 раз превышает коэффициент поглощения мягких тканей (Z =20 для кальция и Z =15 для фосфора). При прохождении рентгеновских лучей через тело человека, кости четко выделяются на фоне мышц, соединительной ткани и т.п.

Известно, что пищеварительные органы имеют такую же величину коэффициента поглощения, как и другие мягкие ткани. Но тень пищевода, желудка и кишечника можно различить, если пациент примет внутрь контрастное вещество - сернокислый барий (Z= 56 для бария). Сернокислый барий очень непрозрачен для рентгеновских лучей и часто используется для рентгенологического обследования желудочно-кишечного тракта. Определенные непрозрачные смеси вводят в кровяное русло для того, чтобы исследовать состояние кровеносных сосудов, почек и т.п. Как контрастное вещество в этом случае используют йод, атомный номер которого составляет 53.

Зависимость поглощения рентгеновских лучей от Z используют также для защиты от возможного вредного действия рентгеновского излучения. Для этой цели применяют свинец, величина Z для которого равна 82.

Конец работы -

Эта тема принадлежит разделу:

Природа рентгеновских лучей

Дозиметрия излучений поглощенная доза излучения это энергия ионизирующего излучения.. излучение в медицине.. медицинская радиология является разделом медицинской науки в котором используются излучения в диагностике и лечении..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Природа рентгеновских лучей
Рентгеновские лучи были обнаружены случайно в 1895 году знаменитым немецким физиком Вильгельмом Рентгеном. Он изучал катодные лучи в газоразрядной трубке низкого давления при высоком напряжении меж

Получение рентгеновского излучения
Рентгеновские лучи возникают, когда быстрые электроны, или катодные лучи, сталкиваются со стенками или анодом газоразрядной трубки низкого давления. Современная рентгеновская трубка представляет со

Тормозное рентгеновское излучение
Тормозное рентгеновское излучение возникает при торможении электронов, движущихся с большой скоростью, электрическими полями атомов анода. Условия торможения отдельных электронов не одинаковы. В ре

Характеристическое рентгеновское излучение
Характеристическое рентгеновское излучение имеет не сплошной, а линейчатый спектр. Этот тип излучения возникает, когда быстрый электрон, достигая анода, проникает во внутренние орбитали атом

Первичные физические механизмы взаимодействия рентгеновского излучения с веществом
Для первичного взаимодействия между рентгеновским излучением и веществом характерно три механизма: 1. Когерентное рассеяние. Эта форма взаимодействия происходит, когда фотоны рентген

Некоторые эффекты взаимодействия рентгеновского излучения с веществом
Как было упомянуто выше, рентгеновские лучи способны возбуждать атомы и молекулы вещества. Это может вызывать флюоресценцию определенных веществ (например, сульфата цинка). Если параллельный пучок

Применение рентгеновского излучения в медицине
Причиной применения рентгеновского излучения в диагностике послужила их высокая проникающая способность. В первое время после открытия, рентгеновское излучение использовалось по большей части, для

Атомное ядро
Известно, что атомное ядро является небольшим образованием, состоящим из нуклонов, которые включают два типа элементарных частиц: протоны и нейтроны. Протон имеет положительный электрический заряд,

Радиоактивность
Радиоактивность - спонтанный распад (дезинтеграция) атомного ядра с излучением субатомных частиц и электромагнитных лучей. Этот феномен был обнаружен в 1896г французским физиком Беккерелем.

Активность. Закон ядерного распада
Существует два вида радиоактивности: естественная и искусственная. Естественная радиоактивность происходит спонтанно без любого внешнего воздействия. Она является результатом нестабил

Ионизирующие излучения
Радиоактивный распад ядер приводит к образованию нескольких типов ионизирующих излучений. Такое излучение, проходя через вещества, ионизирует их атомы и молекулы, то есть превращает их в электричес

Нейтроны
Нейтроны являются незаряженными частицами и производят ионизацию косвенно, взаимодействуя первоначально с атомными ядрами, а не с электронами. Они обладают широким диапазоном длины пробега в вещест

Обнаружение и измерение излучений
Существует много типов приборов, которые используются для обнаружения ионизирующих излучений. Наиболее часто применяют счетчики, которые являются очень чувствительными детекторами α-частиц, но

Дозиметрия излучений
Для определения интенсивности излучений используется дозиметрия, которую производят разными способами. Основными дозами, используемыми в дозиметрии, являются: поглощенная до

Вредное действие излучения
Энергия ионизирующих излучений значительно отличается от тепловой энергии. Смертельная экспозиционная доза гамма-лучей очень незначительно изменяет температуру тела. Излучения, проходя через живые

Хроническое действие небольших доз излучения
Все люди подвержены хроническому действию низких доз ионизирующего излучения, которое возникает от космических лучей и от радионуклидов, содержащихся в окружающей среде. Космические лучи включают п

Радионуклиды в медицинских исследованиях
В настоящее время синтезируется большое число различных биологических смесей, которые содержат радионуклиды водорода, углерода, фосфора, серы и т.п. Их вводят в организм экспериментальных животных

Радионуклиды в диагностике
Радиоактивные следящие устройства поглощаются исследуемым органом. Детектор излучения находится за пределами органа на протяжение какого-то времени и в различных положениях. Для того чтобы минимизи

Терапевтическая радиология
Делящиеся клетки наиболее чувствительны к действию ионизирующего излучения. Клетки злокачественных опухолей делятся более часто, чем клетки нормальных тканей. Быстро делящиеся раковые клетки и клет