Эталонная модель взаимосвязи открытых систем. Эталонная модель OSI взаимосвязи открытых систем Иерархия уровней, протоколы и стеки

Базовая ЭМВОС - это модель, принятая ISO для описания общих принципов взаимодействия информационных систем. ЭМВОС признана всеми международными организациями как основа для стандартизации протоколов информационных сетей.

В ЭМВОС информационная сеть рассматривается как совокупность функций, которые делятся на группы, называемые уровнями . Разделение на уровни позволяет вносить изменения в средства реализации одного уровня без перестройки средств других уровней, что значительно упрощает и удешевляет модернизацию средств по мере развития техники.

ЭМВОС содержит семь уровней. Ниже приведены их номера, названия и выполняемые функции.

7-й уровень - прикладной (Application) : включает средства управления прикладными процессами; эти процессы могут объединяться для выполнения поставленных заданий, обмениваться между собой данными. Другими словами, на этом уровне определяются и оформляются в блоки те данные, которые подлежат передаче по сети. Уровень включает, например, такие средства для взаимодействия прикладных программ, как прием и хранение пакетов в "почтовых ящиках" (mail-box).

6-й уровень - представительный (Presentation): реализуются функции представления данных (кодирование, форматирование, структурирование). Например, на этом уровне выделенные для передачи данные преобразуются из кода ЕBCDIC в ASCII и т.п.

5-й уровень - сеансовый (Session): предназначен для организации и синхронизации диалога, ведущегося объектами (станциями) cети. На этом уровне определяются тип связи (дуплекс или полудуплекс), начало и окончание заданий, последовательность и режим обмена запросами и ответаами взаимодействующих партнеров.

4-й уровень - транспортный (Transport) : предназначен для управления сквозными каналами в сети передачи данных; на этом уровне обеспечивается связь между оконечными пунктами (в отличие от следующего сетевого уровня, на котором обеспечивается передача данных через промежуточные компоненты сети). К функциям транспортного уровня относятся мультиплексирование и демультиплексирование (сборка-разборка пакетов), обнаружение и устранение ошибок в передаче данных, реализация заказанного уровня услуг (например, заказанной скорости и надежности передачи). На транспортном уровне пакеты обычно называют сегментами.

3-й уровень - сетевой (Network) : на этом уровне происходит управление передачей пакетов через промежуточные узлы и сети, контроль нагрузки на сеть с целью предотвращения перегрузок, отрицательно влияющих на работу сети, маршрутизация пакетов, т.е. определение и реализация маршрутов, по которым передаются пакеты. Маршрутизация сводится к определению логических каналов. Логическим каналом называется виртуальное соединение двух или более объектов сетевого уровня, при котором возможен обмен данными между этими объектами. Понятию логического канала необязательно соответствие некоего физического соединения линий передачи данных между связываемыми пунктами. Это понятие введено для абстрагирования от физической реализации соединения.

2-й уровень - канальный (Link, уровень звена данных ): предоставляет услуги по обмену данными между логическими объектами предыдущего сетевого уровня и выполняет функции, связанные с формированием и передачей кадров, обнаружением и исправлением ошибок, возникающих на следующем, физическом уровне. Кадром называется пакет канального уровня, поскольку пакет на предыдущих уровнях может состоять из одного или многих кадров. В ЛВС функции канального уровня подразделяют на два подуровня: управление доступом к каналу (МАС - Medium Access Control) и управление логическим каналом ( LLC - Logical Link Control). К подуровню LLC относится часть функций канального уровня, не связанных с особенностями передающей среды. На подуровне МАС осуществляется доступ к каналу передачи данных.

1-й уровень - физический (Physical): предоставляет механические, электрические, функциональные и процедурные средства для установления, поддержания и разъединения логических соединений между логическими объектами канального уровня; реализует функции передачи битов данных через физические среды. Именно на физическом уровне осуществляются представление информации в виде электрических или оптических сигналов, преобразования формы сигналов, выбор параметров физических сред передачи данных.

В конкретных случаях может возникать потребность в реализации лишь части названных функций, тогда соответственно в сети имеется лишь часть уровней. Так, в простых (неразветвленных) ЛВС отпадает необходимость в средствах сетевого и транспортного уровней.

Передача данных через разветвленные сети происходит при использовании инкапсуляции/декапсуляции порций данных. Так, сообщение, пришедшее на транспортный уровень, делится на сегменты, которые получают заголовки и передаются на сетевой уровень На сетевом уровне сегмент может быть разделен на части (пакеты), если сеть не поддерживает передачу сегментов целиком. Пакет снабжается своим сетевым заголовком (т.е. происходит инкапсуляция сегментов в пакеты). При передаче между узлами промежуточной ЛВС может потребоваться разделение пакетов на кадры (т.е. инкапсуляция пакетов в кадры). В приемном узле сегменты декапсулируются и восстанавливается исходное сообщение.

Билет №9

1. Методы доступа в локальных вычислительных сетях

Локальная вычислительная сеть включаетединицы-десятки, реже сотни компьютеров, объединяемых средой передачи данных, общей для всех узлов. Одна из типичных сред передачи данных в ЛВС - отрезок (сегмент) коаксиального кабеля. К нему через аппаратуру окончания канала данных подключаются узлы (станции данных), которыми могут быть компьютеры и разделяемое узлами периферийное оборудование. Поскольку среда передачи данных общая, а запросы на сетевые обмены у узлов появляются асинхронно, то возникает проблема разделения общей среды между многими узлами, другими словами, проблема обеспечения доступа к сети.

Доступом к сети называют взаимодействие узла сети со средой передачи данных для обмена информацией с другими узлами. Управление доступом к среде - это установление последовательности, в которой узлы получают полномочия по доступу к среде передачи данных. Под полномочием понимается право инициировать определенные действия, динамически предоставляемые объекту, например станции данных в информационной сети.

Методы доступа могут быть случайными или детерминированными. Основным используемым методом случайного доступа является метод множественного доступа с контролем несущей и обнаружением конфликтов (МДКН/ОК). Англоязычное название метода - Carrier Sense Multiple Access /Collision Detection (CSMA/CD). Этот метод основан на контроле несущей в линии передачи данных (на слежении за наличием в линии электрических колебаний) и устранении конфликтов, возникающих из-за попыток одновременного начала передачи двумя или более станциями. Устранение осуществляется путем прекращения передачи конфликтующими узлами и повторением попыток захвата линии каждым из этих узлов через случайный отрезок времени.

МДКН/ОК является децентрализованным широковещательным (broadcasting) методом. Все узлы имеют равные права по доступу к сети. Узлы, имеющие данные для передачи по сети, контролируют состояние линии передачи данных. Если линия свободна, то в ней отсутствуют электрические колебания. Узел, желающий начать передачу, обнаружив в некоторый момент времени t 1 отсутствие колебаний, захватывает свободную линию, т.е. получает полномочия по использованию линии. Любая другая станция, желающая начать передачу в момент времени t 2 > t 1 при обнаружении электрических колебаний в линии, откладывает передачу до момента t + t d , где t d - задержка.

Различают настойчивый и ненастойчивый МДКН/ОК в зависимости от того, как определяется t d . В первом случае попытка захвата канала происходит сразу после его освобождения, что допустимо при слабой загрузке сети. При заметной загрузке велика вероятность того, что несколько станций будут претендовать на доступ к сети сразу после ее освобождения, и, следовательно, конфликты станут частыми. Поэтому обычно используют ненастойчивый МДКН/ОК, в котором задержка t d является случайной величиной.

При работе сети каждая станция анализирует адресную часть передаваемых по сети кадров с целью обнаружения и приема кадров, предназначенных для нее.

Рис. 4.1 . Алгоритмы доступа по методу МДКН/ОК

На рис. 4.1 представлены алгоритмы приема и передачи данных в одном из узлов при МДКН/ОК.

Конфликты (столкновения ) возникают, когда два или большее число узлов "одновременно" пытаются захватить линию. Понятие "одновременность событий" в связи с конечностью скорости распространения сигналов по линии конкретизируется как отстояние событий во времени не более чем на величину 2d , называемую окном столкновений , где d - время прохождения сигналов по линии между конфликтующими узлами. Если какие-либо узлы начали передачу в окне столкновений, то наложение сигналов этих узлов друг на друга приводит к распространению по сети искаженных данных. Это искажение и используется для обнаружения конфликта. Это можно сделать либо сравнением в передатчике данных, передаваемых в линию (неискаженных) и получаемых из нее (искаженных), либо по появлению постоянной составляющей напряжения в линии. Последнее обусловлено тем, что используемый для представления данных манчестерский код не имеет постоянной составляющей, которая однако появляется при его искажении. Обнаружив конфликт, узел должен оповестить об этом партнера по конфликту, послав дополнительный сигнал затора, после чего станции должны отложить попытки выхода в линию на время t d . Очевидно, что значения t d должны быть различными для станций, участвующих в конфликте; поэтому t d - случайная величина. Ее математическое ожидание должно иметь тенденцию к росту по мере увеличения числа идущих подряд неудачных попыток захвата линии.

Среди детерминированных методов доступа к сети передачи данных преобладают маркерные методы доступа . Маркерные методы основаны на передаче полномочий на передачу одному из узлов сети с помощью специального информационного объекта, называемого маркером.

Применяется ряд разновидностей маркерных методов доступа. Например, в эстафетном методе передача маркера выполняется в порядке очередности; в способе селекторного опроса (квантированной передачи) сервер опрашивает станции данных и передает полномочие одной из тех станций, которые готовы к передаче. В кольцевых одноранговых сетях широко применяется тактируемый маркерный доступ, при котором маркер циркулирует по кольцу и используется станциями для передачи своих данных.

2. Комплексные автоматизированные системы. Технология EPD

Комплексная автоматизация проектирования вносит коренные изменения в технологию проектирования, начиная от подготовки исходных данных, представления справочно-информационных материалов, методов решения и оценки и до конечных операций, т. е. до изготовления и размножения проектно-сметной документации.

В настоящее время значительное число проектных институтов страны уже имеет опыт использования программ для автоматизации отдельных этапов в процессе проектирования. Опыт комплексной автоматизации проектирования пока совершенствуется и поэтому еще окончательно не отработаны стабильные методы и процедуры такого проектирования. Однако переходным звеном между применением частных программ и комплексной автоматизацией процесса проектирования" являются технологические линии автоматизированного проектирования (ТЛП), которые разрабатываются в ряде научно-исследовательских институтов нашей страны и за рубежом. ТЛП объединяют несколько совместно работающих групп (бригад) автоматизированного проектирования. Основной задачей ТЛП является повышение качества проектно-сметной документации и производительности труда проектировщиков.

При разработке проектов ТЛП может выполнять определенный комплекс проектных работ. При этом структура ТЛП имеет две подсистемы: проектирующие и обеспечивающие. Проектирующие подсистемы непосредственно участвуют в процессах разработки проекта, а обеспечивающие - занимаются технологической подготовкой процессов автоматизированного проектирования (рис. II.7)

Организацию, управление и планирование процесса проектирования в ТЛП осуществляют с помощью разработанных технологических карт, которые имеют следующие три вида: технологические карты проектирования (ТКП), исполнительные технологические карты (ИТК) и организационные технологические карты (ОТК). Основной из них при составлении поточной технологии проектирования на ТЛП является ТКП (табл. II.3), которая составляется в процессе анализа всех операций, выполняемых на технологической линии, с определением сроков проектирования и трудозатрат на каждом этапе.

Основой организации процесса проектирования является ОТК (табл. П.4), которые предназначаются для представления сведений о наличии программного обеспечения и перечня проектных операций, составляющих рассматриваемый проектный процесс.

ТЛП использует комплекс технических средств, включающих вычислительную систему, организационную технику, средства связи.

Одной из первых в нашей стране была технологическая линия по проектированию несущих каркасов гражданских зданий на основе серии ИИ-04-КОРТ (каркас ортогональный).

EPD-технологии (Elect-ronic Product Definition электронное описание изделия). В соответствии с EPD-подходом вся информация, относящаяся к одному изделию, структурируется по типу, назначению и увязывается с последовательностью технологических производственных процессов (причем, в соответствии со структурой самого изделия). EPD-технология обеспечивает разработку и поддержку электронной информационной модели на протяжении всего жизненного цикла изделия (включая маркетинг, концептуальное и рабочее проектирование, технологическую подготовку, производство, эксплуатацию, ремонт и утилизацию)

Билет №10

Разновидности САПР

Классификацию САПР осуществляют по ряду признаков, например по приложению, целевому назначению, масштабам (комплексности решаемых задач), характеру базовой подсистемы - ядра САПР.

По приложениям наиболее представительными и широко используемыми являются следующие группы САПР:

  • САПР для применения в отраслях общего машиностроения. Их часто называют машиностроительными САПР или системами MCAD (Mechanical CAD);
  • САПР для радиоэлектроники: системы ECAD (Electronic CAD) или EDA (Electronic Design Automation);
  • САПР в области архитектуры и строительства.

Кроме того, известно большое число специализированных САПР, или выделяемых в указанных группах, или представляющих самостоятельную ветвь классификации. Примерами таких систем являются САПР больших интегральных схем (БИС); САПР летательных аппаратов; САПР электрических машин и т. п.

По целевому назначению различают САПР или подсистемы САПР, обеспечивающие разные аспекты (страты) проектирования. Так, в составе MCAD появляются рассмотренные выше CAE/CAD/CAM-системы.

По масштабам различают отдельные программно-методические комплексы (ПМК) САПР, например: комплекс анализа прочности механических изделий в соответствии с методом конечных элементов (МКЭ) или комплекс анализа электронных схем; системы ПМК; системы с уникальными архитектурами не только программного (software), но и технического (hardware) обеспечений.

По характеру базовой подсистемы различают следующие разновидности САПР:

1. САПР на базе подсистемы машинной графики и геометрического моделирования. Эти САПР ориентированы на приложения, где основной процедурой проектирования является конструирование, т. е. определение пространственных форм и взаимного расположения объектов. К этой группе систем относится большинство САПР в области машиностроения, построенных на базе графических ядер.

В настоящее время широко используют унифицированные графические ядра, применяемые более чем в одной САПР (ядра Parasolid фирмы EDS Urographies и ACIS фирмы Intergraph).

2. САПР на базе СУБД. Они ориентированы на приложения, в которых при сравнительно несложных математических расчетах перерабатывается большой объем данных. Такие САПР преимущественно встречаются в технико-экономических приложениях, например при проектировании бизнес-планов, но они имеются также при проектировании объектов, подобных щитам управления в системах автоматики.

3. САПР на базе конкретного прикладного пакета. Фактически это автономно используемые ПМК, например имитационного моделирования производственных процессов, расчета прочности по МКЭ, синтеза и анализа систем автоматического управления и т. п. Часто такие САПР относятся к системам САЕ. Примерами могут служить программы логического проектирования на базе языка VHDL, математические пакеты типа MathCAD.

4. Комплексные (интегрированные) САПР, состоящие из совокупности подсистем предыдущих видов. Характерными примерами комплексных САПР являются CAE/CAD/CAM-системы в машиностроении или САПР БИС. Так, САПР БИС включает в себя СУБД и подсистемы проектирования компонентов, принципиальных, логических и функциональных схем, топологии кристаллов, тестов для проверки годности изделий. Для управления столь сложными системами применяют специализированные системные среды.

Телекоммуникации являются специфической сферой деятельности человека назначение продуктов, производимых данной отраслью является обеспечения взаимодействия удаленных информационных систем. Зачастую эти системы оказываются построенными на аппаратуре различных производителей. Именно поэтому для данной отрасли очень важными являются вопросы стандартизации.

Для разработчика и изготовителя телекоммуникационного оборудования соответствие действующим и перспективным стандартам отрасли является ключевым фактором, который обеспечивает необходимый рынок сбыта для производимого оборудования.

Для потребителя данного оборудования фактор соответствия тоже очень важен, так как соответствие телекоммуникационной аппаратуры стандартам гарантирует эффективное использование вложенных в нее средств. Поэтому значительной является роль специалиста по информационным технологиям (IT), задачей которого является находить грамотные и экономичные решения, которые отвечают текущим и перспективным информационным потребностям фирмы.

Стандарт ISO 7498

Данный стандарт имеет тройной заголовок «Информационно-вычислительные системы — Взаимодействие открытых систем — Эталонная модель». Обычно его называют короче «Эталонная модель взаимодействия открытых систем». Публикация этого стандарта в 1983 году подвела итог многолетней работы многих известных телекоммуникационных компаний и стандартизующих организаций.

Основной идеей, которая положена в основу этого документа, является разбиение процесса информационного взаимодействия между системами на уровни с четко разграниченными функциями.

Преимущества слоистой организации взаимодействия заключаются в том, что такая организация обеспечивает независимую разработку уровневых стандартов, модульность разработок аппаратуры и программного обеспечения информационно-вычислительных систем и способствует тем самым техническому прогрессу в данной области.

В соответствии с ISO 7498 выделяются семь уровней (слоёв) информационного взаимодействия:

  1. Уровень приложения
  2. Уровень представления
  3. Уровень сессии
  4. Транспортный уровень
  5. Сетевой уровень
  6. Канальный уровень
  7. Физический уровень

Информационное взаимодействие двух или более систем, таким образом, представляет собой совокупность информационных взаимодействий уровневых подсистем, причем каждый слой локальной информационной системы взаимодействует только с соответствующим слоем удаленной системы.

Протоколом называется набор алгоритмов (правил) взаимодействия объектов одноименных уровней.

Интерфейсом называется совокупность правил, в соответствии с которыми осуществляется взаимодействие с объектом данного уровня.

Процесс помещения фрагментированных блока данных одного уровня в блоки данных другого уровня называют инкапсуляцией .

Уровень приложения — уровень 7 модели OSI

Протоколы, которые определены на седьмом уровне OSI, предназначены для обеспечения доступа к ресурсам сети программ-приложений пользователя. На данном уровне определяется интерфейс с коммуникационной частью приложения.

В качестве примера протоколов прикладного уровня можно привести протокол Telnet, который обеспечивает доступ пользователя к хосту в режиме удаленного терминала.

Уровень представления — уровень 6 модели OSI

На этом уровне выполняются алгоритмы преобразования формата представления данных — ASCII, КОИ-8.

Уровень сессии — уровень 5 модели OSI

На данном уровне устанавливаются, обслуживаются и разрываются сессии между представительными объектами приложений. В качестве примера протокола сеансового уровня можно рассмотреть протокол RPC (remote procedure call). Как следует из названия, данный протокол предназначен для отображения результатов выполнения процедуры на удаленном хосте. В процессе выполнения этой процедуры между приложениями устанавливается сеансовое соединение. Назначением данного соединения является обслуживание запросов, которые возникают при взаимодействии приложения — клиент с приложением — сервером.

Транспортный уровень — уровень 4 модели OSI

Существует два типа протоколов транспортного уровня — сегментирующие протоколы и дейтаграммные протоколы.

Сегментирующие протоколы транспортного уровня, разбивают исходное сообщение на блоки данных транспортного уровня — сегменты. Основной функцией таких протоколов транспортного уровня является обеспечение доставки этих сегментов до объекта назначения и восстановление сообщения.

Дейтаграммные протоколы не сегментируют сообщение и отправляют его одним куском, который называется «дейтаграмма».

Управление потоком является важной функцией надежных транспортных протоколов, поскольку этот механизм позволяет обеспечивать передачу данных по сетям с нестабильной структурой. Управление потоком заключается в обязательном ожидании передатчиком подтверждения приема ограниченного числа сегментов приемником.

Количество сегментов, которое передатчик может отправить без подтверждения их получения от приемника, называется окном .

Сетевой уровень — уровень 3 модели OSI

Основной задачей протоколов сетевого уровня является определение пути, который будет использован для доставки блоков данных протоколов верхних уровней.

Для того чтобы блок данных был доставлен до какого-либо хоста, этому хосту должен быть поставлен в соответствие известный передатчику сетевой адрес. Группы хостов, объединенные по территориальному принципу образуют сети. Для упрощения решения задачи маршрутизации сетевой адрес хоста составляется из двух частей: адреса сети и адреса хоста. Таким образом, задача маршрутизации распадается на две подзадачи — поиск сети и поиск хоста в этой сети.

Канальный уровень — уровень 2 модели OSI

Назначением протоколов канального уровня является обеспечение передачи данных по физическому носителю — среде передачи. На канальном уровне данные передаются в виде блоков, которые называются кадрами. Тип используемой среды передачи и её топология во многом определяют вид кадра протокола транспортного уровня, который должен быть использован. При использовании топологий «общая шина» и «point-to-multipoint» средствами протокола канального уровня должны быть определены физические адреса, с помощью которых будет производиться обмен данными по разделяемой среде передачи и процедура доступа к этой среде. Примерами таких протоколов являются протоколы Ethernet (в соответствующей части) и HDLC. Протоколы транспортного уровня, которые предназначены для работы в среде типа «точка-точка», не определяют физических адресов и имеют упрощенную процедуру доступа. Примером протокола такого типа является протокол PPP.

Физический уровень — уровень 1 модели OSI

Протоколы физического уровня обеспечивают непосредственный доступ к среде передачи данных для протоколов канального и последующих уровней. Данные передаются протоколами данного уровня в виде битов (для последовательных протоколов) или групп бит (для параллельных протоколов). На данном уровне определяются набор сигналов, которыми обмениваются системы, параметры этих сигналов — временные и электрические и последовательность формирования этих сигналов при выполнении процедуры передачи данных. Кроме того, на данном уровне формулируются требования к электрическим, физическим и механическим характеристикам среды передачи и коннекторов.

Наиболее распространенным протоколом транспортного уровня до недавних пор был V.24, который обеспечивал интерфейс последовательного обмена IBM PC.

Различают семь уровней ЭМВОС.

Аппаратура рабочих мест в автоматизированных системах проектирования и управления.

В качестве средств обработки данных в современных САПР широко

Используют рабочие станции, серверы, персональные компьютеры. Применение больших ЭВМ и в том числе суперэвм нехарактерно, так как они дороги и их отношение производительность - цена существенно ниже подобного показателя серверов и многих рабочих станций. На базе рабочих станций или персональных компьютеров создают АРМ.

Типичный состав устройств АРМ: ЭВМ с одним или несколькими микропроцессорами, дисковой, оперативной и кэш-памятью и шинами, служащими

Для взаимной связи устройств; устройства ввода-вывода, включающие в себя, как минимум, клавиатуру, мышь, дисплей; дополнительно в состав АРМ могут входить принтер, сканер, плоттер (графопостроитель) и некоторые другие периферийные устройства.

В зависимости от назначения существуют АРМ конструктора, АРМ технолога, АРМ руководителя проекта и т. П. Они могут различаться составом периферийных устройств, характеристиками ЭВМ. В АРМ конструктора (графических рабочих станциях) используются растровые мониторы с цветными трубками. Дигитайзеры, сканеры, принтеры, плоттеры могут входить в состав АРМ или разделяться пользователями нескольких рабочих станций в составе локальной вычислительной сети.

Периферийные устройства.

Для ввода графической информации с имеющихся документов в САПР используют дигитайзеры и сканеры. Дигитайзер применяют для ручного ввода. Он имеет вид кульмана, по его электронной доске перемещается курсор, на котором расположены визир и кнопочная панель. Курсор имеет электромагнитную связь с сеткой проводников в электронной доске. При нажатии кнопки в некоторой позиции курсора происходит занесение в память информации о координатах этой позиции. Таким образом может осуществляться ручная сколка чертежей. Для автоматического ввода информации с имеющихся текстовых или графических документов используют сканеры планшетного или протяжного типа. Способ считывания оптический. В сканирующей головке размещаются оптоволоконные самофокусирующиеся линзы и фотоэлементы. Разрешающая способность в разных моделях составляет от 300 до 800 точек на дюйм (этот параметр часто обозначают dpi). Считанная информация имеет растровую форму, программное обеспечение сканера представляет ее в одном из стандартных форматов, например TIFF, GIF, PCX, JPEG, и для дальнейшей обработки может выполнить векторизацию - перевод графической информации в векторную форму, например в формат DXF. Для вывода информации применяют принтеры и плоттеры. Первые из них ориентированы на получение документов малого формата (A3, А4), вторые - на вывод графической информации на широкоформатные носители. Типичная разрешающая способность принтеров и плоттеров 300 dpi, в настоящее время она повышена до 720 dpi. В современных устройствах управление

Осуществляется встроенными микропроцессорами. Типичное время вывода Монохромного изображения формата А1 находится в пределах 2 ... 7 мин, цветного - в 2 раза больше.

Компоненты математического обеспечения. Требования к математическим моделям и численным методам в САПР

К МО анализа относятся математические модели, численные методы, алгоритмы выполнения проектных процедур. Компоненты МО определяются базовым математическим аппаратом, специфичным для каждого из иерархических уровней проектирования. На микроуровне типичные математические модели представлены дифференциальными уравнениями в частных производных вместе с краевыми условиями. К этим моделям, называемым распределенными, относятся многие уравнения математической физики. Объектами исследования здесь являются поля физических величин, что требуется при анализе прочности строительных сооружений или машиностроительных деталей, исследовании процессов в жидких средах, моделировании концентраций и потоков частиц в электронных приборах и т. п.. Число совместно исследуемых различных сред (число деталей, слоев материала, фаз агрегатного состояния) в практически используемых моделях микроуровня не может быть большим ввиду сложностей вычислительного характера. Резко снизить вычислительные затраты в многокомпонентных средах можно, Только применив иной подход к моделированию, основанный на принятии определенных допущений. Допущение, выражаемое дискретизацией пространства, позволяет перейти к моделям макроуровня.

Моделями макроуровня, называемыми также сосредоточенными, являются системы алгебраических и обыкновенных Дифференциальных уравнений, поскольку независимой переменной здесь остается только время. Упрощение описания отдельных компонентов (деталей) позволяет исследовать модели процессов в устройствах, приборах, механических узлах, число компонентов в которых может доходить до нескольких тысяч. В тех случаях, когда число компонентов в исследуемой системе превышает некоторый порог, сложность модели системы на макроуровне вновь становится чрезмерной. Поэтому, принимая соответствующие допущения, переходят на функционально-логический уровень. На этом уровне используют аппарат передаточных функций для исследования аналоговых (непрерывных) процессов или аппарат математической логики и конечных автоматов, если объектом исследования является дискретный процесс, т. е. Процесс с дискретным множеством

состояний наконец, для исследования еще более сложных объектов, примерами которых могут служить производственные предприятия и их объединения, вычислительные системы и сети, социальные системы и другие подобные объекты, применяют аппарат теории массового обслуживания, возможно использование и некоторых других подходов, например сетей Петри. Эти модели относятся к системному уровню моделирования.

Основными требованиями к МО являются требования адекватности, точности, экономичности. Модель всегда лишь приближенно отражает некоторые свойства объекта. Адекватность имеет место, если модель отражает заданные свойства объекта

с приемлемой точностью. Под точностью понимают степень соответствия Оценок одноименных свойств объекта и модели. Экономичность (вычислительная эффективность) определяется затратами ресурсов, требуемых для реализации модели. Поскольку в САПР используются математические модели, далее речь пойдет о характеристиках именно математических моделей, и экономичность будет характеризоваться затратами машинных времени и памяти. Адекватность оценивается перечнем отражаемых свойств и областями Адекватности. Область адекватности - область в пространстве параметров, в пределах которой погрешности модели остаются в допустимых пределах.

Структура технического обеспечения. Требования, предъявляемые к техническому обеспечению.

Техническое обеспечение САПР включает в себя различные технические Средства (hardware), используемые для выполнения автоматизированного

Проектирования, а именно ЭВМ, периферийные устройства, сетевое оборудование, а также оборудование некоторых вспомогательных систем (например, измерительных), поддерживающих проектирование.

Используемые в САПР технические средства должны обеспечивать:

1) выполнение всех необходимых проектных процедур, для которых имеется соответствующее ПО;

2) взаимодействие между проектировщиками и ЭВМ, поддержку интерактивного режима работы;

3) взаимодействие между членами коллектива, работающими над общим проектом. Первое из этих требований выполняется при наличии в САПР вычислительных машин и систем с достаточными производительностью и емкостью памяти. Второе требование относится к пользовательскому интерфейсу и выполняется за счет включения в САПР удобных средств ввода-вывода данных и прежде всего устройств обмена графической информацией. Третье требование обусловливает объединение аппаратных средств САПР в вычислительную сеть.

В результате общая структура ТО САПР представляет собой сеть узлов, связанных между собой средой передачи данных. Узлами (станциями

Данных) являются рабочие места проектировщиков, часто называемые автоматизированными рабочими местами (АРМ) или рабочими станциями

(WS - Workstation), ими могут быть также большие ЭВМ (мейнфреймы), отдельные периферийные и измерительные устройства. Именно в АРМ должны быть средства для интерфейса проектировщика с ЭВМ. Что касается вычислительной мощности, то она может быть распределена между различными узлами вычислительной сети.

Среда передачи данных представлена каналами передачи данных, состоящими из линий связи и коммутационного оборудования.

В каждом узле можно выделить оконечное оборудование данных (ООД), выполняющее определенную работу по проектированию, и аппаратуру окончания канала данных (АКД), предназначенную для связи ООД со средой

Передачи данных. Например, в качестве ООД можно рассматривать персональный компьютер, а в качестве АКД - вставляемую в компьютер сетевую плату. Канал передачи данных - средство двустороннего обмена данными, включающее в себя АКД и линию связи. Линией связи называют часть физической среды, используемую для распространения сигналов в определенном направлении; примерами линий связи могут служить коаксиальный кабель, витая пара проводов, волоконно-оптическая линия связи (ВОЛС). Близким является понятие канала (канала связи), под которым понимают средство односторонней передачи данных. Примером канала связи может быть полоса частот, выделенная одному передатчику при радиосвязи. В некоторой линии можно образовать несколько каналов связи, по каждому из которых передается своя информация. При этом говорят, что линия разделяется между несколькими каналами.

Эталонная модель взаимосвязи открытых систем.

В отношении вычислительных сетей реализация концепции открытости привела к появлению эталонной модели взаимосвязи открытых систем (ЭМВОС), предложенной Международной организацией стандартизации (ISO - International

Standard Organization). В этой модели дано описание общих принципов, правил, соглашений, обеспечивающих взаимодействие информационных систем и называемых протоколами. Информационную сеть в ЭМВОС рассматривают как совокупность функций (протоколов), которые подразделяют на группы, называемые уровнями. Именно разделение на уровни позволяет вносить изменения в средства реализации одного уровня без перестройки средств других уровней, что значительно упрощает и удешевляет модернизацию средств по мере развития техники.

Различают семь уровней ЭМВОС.

На физическом уровне осуществляется представление информации в виде электрических или оптических сигналов, преобразование формы сигналов, выбор параметров физических сред передачи данных, организуется передача информации через физические среды.

На канальном уровне выполняется обмен данными между соседними узлами сети, т. е. узлами, непосредственно связанными физическими соединениями без других промежуточных узлов. Отметим, что пакеты канального уровня обычно называют кадрами.

На сетевом уровне происходит формирование пакетов по правилам тех промежуточных сетей, через которые проходит исходный пакет, и маршрутизация пакетов, т. е. определение и реализация маршрутов, по которым передаются пакеты.

На транспортном уровне обеспечивается связь между оконечными пунктами (в отличие от предыдущего сетевого уровня, на котором обеспечивается передача данных через промежуточные компоненты сети). К функциям транспортного уровня относятся мультиплексирование и демультиплексирование (сборка-разборка сообщений на пакеты в конечных пунктах).

На сеансовом уровне определяются тип связи (дуплекс или полудуплекс), начало и окончание заданий, последовательность и режим обмена запросами и ответами взаимодействующих партнеров.

На представительном уровне реализуются функции представления данных (кодирование, форматирование, структурирование).

На прикладном уровне определяются и оформляются в сообщения те данные, которые подлежат передаче по сети.

Для удобства модернизации сложные информационные системы делают максимально открытыми, т. е. приспособленными для внесения изменений в некоторую часть системы при сохранении неизменными остальных частей. В отношении вычислительных сетей реализация концепции открытости привела к появлению эталонной модели взаимосвязи открытых систем (ЭМВОС), предложенной Международной организацией стандартизации (ISO - International Standard Organization). В этой модели дано описание общих принципов, правил, соглашений, обеспечивающих взаимодействие информационных систем и называемых протоколами.

Информационную сеть в ЭМВОС рассматривают как совокупность функций (протоколов), которые подразделяют на группы, называемые уровнями. Именно разделение на уровни позволяет вносить изменения в средства реализации одного уровня без перестройки средств других уровней, что значительно упрощает и удешевляет модернизацию средств по мере развития техники.

Различают семь уровней ЭМВОС.

На физическом (physical) уровне осуществляется представление информации в виде электрических или оптических сигналов, преобразование формы сигналов, выбор параметров физических сред передачи данных, организуется передача информации через физические среды.

На канальном (link) уровне выполняется обмен данными между соседними узлами сети, т. е. узлами, непосредственно связанными физическими соединениями без других промежуточных узлов. Отметим, что пакеты канального уровня обычно называют кадрами.

На сетевом (network) уровне происходит формирование пакетов по правилам тех промежуточных сетей, через которые проходит исходный пакет, и маршрутизация пакетов, т. е. определение и реализация маршрутов, по которым передаются пакеты. Другими словами, маршрутизация сводится к образованию логических каналов. Логическим каналом называют виртуальное соединение двух или более объектов сетевого уровня, при котором возможен обмен данными между этими объектами. Понятию логического канала не обязательно соответствует физическое соединение линий передачи данных между связываемыми пунктами. Это понятие введено для абстрагирования от физической реализации соединения. Еще одной важной функцией сетевого уровня после маршрутизации является контроль нагрузки на сеть с целью предотвращения перегрузок, отрицательно влияющих на работу сети.

На транспортном (transport) уровне обеспечивается связь между оконечными пунктами (в отличие от предыдущего сетевого уровня, на котором обеспечивается передача данных через промежуточные компоненты сети). К функциям транспортного уровня относятся мультиплексирование и демультиплексирование (сборка/разборка сообщений на пакеты в конечных пунктах), обнаружение и устранение ошибок в переданных данных, задание требуемого уровня услуг (например, заказанных скорости и надежности передачи).


На сеансовом (session) уровне определяются тип связи (дуплекс или полудуплекс), начало и окончание заданий, последовательность и режим обмена запросами и ответами взаимодействующих партнеров.

На представительном (presentation) уровне реализуются функции представления данных (кодирование, форматирование, структурирование). Например, на этом уровне выделенные для передачи данные преобразуются из одного кода в другой, в частности, с целью шифрования.

На прикладном (application) уровне определяются и оформляются в сообщения те данные, которые подлежат передаче по сети.

В конкретных случаях может возникать потребность в реализации лишь части названных функций, тогда, соответственно, сеть будет содержать лишь часть уровней. Так, в простых (неразветвленных) ЛВС отпадает необходимость в средствах сетевого и транспортного уровней. Одновременно сложность функций канального уровня делает целесообразным его разделение в ЛВС на два подуровня:

управление доступом к каналу (MAC - Medium Access Control);

управление логическим каналом (LLC - Logical Link Control).

К подуровню LJLC, в отличие от подуровня MAC, относится часть функций канального уровня, независящих от особенностей передающей среды.

Передача данных через разветвленные сети происходит при использовании инкапсуляции/декапсуляции порций данных. Так, сообщение, пришедшее на транспортный уровень, делится на сегменты, которые получают заголовки и передаются на сетевой уровень.

Сегментом обычно называют пакет транспортного уровня. Сетевой уровень организует передачу данных через промежуточные сети. Для этого сегмент может быть разделен на части (пакеты), если сеть не поддерживает передачу сегментов целиком. Пакет снабжается своим сетевым заголовком (т. е. происходит инкапсуляция сегмента в пакет сетевого уровня). При передаче между узлами промежуточной ЛВС требуется инкапсуляция пакетов в кадры с возможной разбивкой пакета. Приемник декапсулирует сегменты и восстанавливает исходное сообщение.

Сетевая модель OSI (англ.open systems interconnection basic reference model - базовая эталонная модельвзаимодействия открытых систем) -сетевая модельстекасетевых протоколовOSI/ISO.

В связи с затянувшейся разработкой протоколов OSI, в настоящее время основным используемым стеком протоколов является TCP/IP, он был разработан ещё до принятия модели OSI и вне связи с ней.

Модель OSI

Тип данных

Уровень (layer)

Функции

7. Прикладной (application)

Доступ к сетевым службам

6. Представительский (presentation)

Представление и шифрование данных

5. Сеансовый (session)

Управление сеансом связи

Сегменты / Дейтаграммы

4. Транспортный (transport)

Прямая связь между конечными пунктами и надежность

3. Сетевой (network)

Определение маршрута и логическая адресация

2. Канальный (data link)

Физическая адресация

1. Физический (physical)

Работа со средой передачи, сигналами и двоичными данными

Уровни модели osi

В литературе наиболее часто принято начинать описание уровней модели OSI с 7-го уровня, называемого прикладным, на котором пользовательские приложения обращаются к сети. Модель OSI заканчивается 1-м уровнем - физическим, на котором определены стандарты, предъявляемые независимыми производителями к средам передачи данных:

    тип передающей среды (медный кабель, оптоволокно, радиоэфир и др.),

    тип модуляции сигнала,

    сигнальные уровни логических дискретных состояний (нуля и единицы).

Любой протокол модели OSI должен взаимодействовать либо с протоколами своего уровня, либо с протоколами на единицу выше и/или ниже своего уровня. Взаимодействия с протоколами своего уровня называются горизонтальными, а с уровнями на единицу выше или ниже - вертикальными. Любой протокол модели OSI может выполнять только функции своего уровня и не может выполнять функций другого уровня, что не выполняется в протоколах альтернативных моделей.

Каждому уровню с некоторой долей условности соответствует свой операнд - логически неделимый элемент данных, которым на отдельном уровне можно оперировать в рамках модели и используемых протоколов: на физическом уровне мельчайшая единица - бит, на канальном уровне информация объединена в кадры, на сетевом - в пакеты (датаграммы), на транспортном - в сегменты. Любой фрагмент данных, логически объединённых для передачи - кадр, пакет, датаграмма - считается сообщением. Именно сообщения в общем виде являются операндами сеансового, представительского и прикладного уровней.

К базовым сетевым технологиям относятся физический и канальный уровни.

Прикладной уровень

Прикладной уровень (уровень приложений) - верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью:

    позволяет приложениям использовать сетевые службы:

    • удалённый доступ к файлам и базам данных,

      пересылка электронной почты;

    отвечает за передачу служебной информации;

    предоставляет приложениям информацию об ошибках;

    формирует запросы к уровню представления.

Протоколы прикладного уровня: RDP HTTP (HyperText Transfer Protocol), SMTP (Simple Mail Transfer Protocol), SNMP (Simple Network Management Protocol), POP3 (Post Office Protocol Version 3), FTP (File Transfer Protocol), XMPP, OSCAR,Modbus, SIP,TELNETи другие.

Представительский уровень

Представительский уровень (уровень представления; англ.presentation layer ) обеспечивает преобразование протоколов и шифрование/дешифрование данных. Запросы приложений, полученные с прикладного уровня, на уровне представления преобразуются в формат для передачи по сети, а полученные из сети данные преобразуются в формат приложений. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

Уровень представлений обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой.

Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена информацией EBCDIC, например, это может бытьмейнфреймкомпанииIBM, а другая - американский стандартный код обмена информациейASCII(его используют большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.

Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от приема несанкционированными получателями. Чтобы решить эту задачу, процессы и коды, находящиеся на уровне представлений, должны выполнить преобразование данных.

Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT- формат изображений, применяемый для передачи графики QuickDraw между программами. Другим форматом представлений является тэгированный формат файлов изображенийTIFF, который обычно используется для растровых изображений с высокимразрешением. Следующим стандартом уровня представлений, который может использоваться для графических изображений, является стандартJPEG.

Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов (MIDI) для цифрового представления музыки, разработанный Экспертной группой по кинематографии стандартMPEG.

Протоколы уровня представления: AFP - Apple Filing Protocol, ICA -Independent Computing Architecture, LPP - Lightweight Presentation Protocol, NCP -NetWare Core Protocol, NDR -Network Data Representation, XDR -eXternal Data Representation, X.25 PAD -Packet Assembler/Disassembler Protocol.

Сеансовый уровень

Сеансовый уровень (англ.session layer ) модели обеспечивает поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений.

Протоколы сеансового уровня: ADSP, ASP, H.245, ISO-SP (OSI Session Layer Protocol (X.225, ISO 8327)), iSNS, L2F, L2TP, NetBIOS, PAP (Password Authentication Protocol), PPTP, RPC, RTCP, SMPP, SCP (Session Control Protocol), ZIP (Zone Information Protocol), SDP (Sockets Direct Protocol)..

Транспортный уровень

Транспортный уровень (англ.transport layer ) модели предназначен для обеспечения надёжной передачи данных от отправителя к получателю. При этом уровень надёжности может варьироваться в широких пределах. Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных. Например, UDPограничивается контролем целостности данных в рамках одной датаграммы и не исключает возможности потери пакета целиком или дублирования пакетов, нарушения порядка получения пакетов данных;TCPобеспечивает надёжную непрерывную передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и, наоборот, склеивая фрагменты в один пакет.

Протоколы транспортного уровня: ATP, CUDP, DCCP, FCP, IL, NBF, NCP, RTP, SCTP, SPX, SST, TCP (Transmission Control Protocol), UDP (User Datagram Protocol).

Сетевой уровень

Сетевой уровень (англ.network layer ) модели предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети.

Протоколы сетевого уровня маршрутизируют данные от источника к получателю. Работающие на этом уровне устройства (маршрутизаторы) условно называют устройствами третьего уровня (по номеру уровня в модели OSI).

Протоколы сетевого уровня: IP/IPv4/IPv6 (Internet Protocol), IPX, X.25, CLNP (сетевой протокол без организации соединений), IPsec (Internet Protocol Security). Протоколы маршрутизации - RIP, OSPF.

Канальный уровень

Канальный уровень (англ.data link layer ) предназначен для обеспечения взаимодействия сетей по физическому уровню и контролем над ошибками, которые могут возникнуть. Полученные с физического уровня данные, представленные в битах, он упаковывает в кадры, проверяет их на целостность и, если нужно, исправляет ошибки (формирует повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием.

Спецификация IEEE 802разделяет этот уровень на два подуровня:MAC(англ.media access control ) регулирует доступ к разделяемой физической среде, LLC(англ.logical link control ) обеспечивает обслуживание сетевого уровня.

На этом уровне работают коммутаторы,мостыи другие устройства. Эти устройства используют адресацию второго уровня (по номеру уровня в модели OSI).

Протоколы канального уровня- ARCnet,ATMEthernet,Ethernet Automatic Protection Switching(EAPS),IEEE 802.2,IEEE 802.11wireless LAN,LocalTalk, (MPLS),Point-to-Point Protocol(PPP),Point-to-Point Protocol over Ethernet(PPPoE),StarLan,Token ring,Unidirectional Link Detection(UDLD),x.25.

Физический уровень

Физический уровень (англ.physical layer ) - нижний уровень модели, который определяет метод передачи данных, представленных в двоичном виде, от одного устройства (компьютера) к другому. Осуществляют передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов.

На этом уровне также работают концентраторы,повторителисигнала имедиаконвертеры.

Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. К физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие виды сред передачи данных как оптоволокно,витая пара,коаксиальный кабель, спутниковый канал передач данных и т. п. Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются:V.35,RS-232,RS-485, RJ-11,RJ-45, разъемыAUIиBNC.

Протоколы физического уровня: IEEE 802.15 (Bluetooth),IRDA,EIARS-232,EIA-422,EIA-423,RS-449,RS-485,DSL,ISDN,SONET/SDH,802.11Wi-Fi,Etherloop,GSMUm radio interface,ITUиITU-T,TransferJet,ARINC 818,G.hn/G.9960.

Семейство TCP/IP

Семейство TCP/IPимеет три транспортных протокола: TCP, полностью соответствующий OSI, обеспечивающий проверку получения данных;UDP, отвечающий транспортному уровню только наличием порта, обеспечивающий обмендатаграммамимежду приложениями, не гарантирующий получения данных; иSCTP, разработанный для устранения некоторых недостатков TCP, в который добавлены некоторые новшества. (В семействе TCP/IP есть ещё около двухсот протоколов, самым известным из которых является служебный протоколICMP, используемый для внутренних нужд обеспечения работы; остальные также не являются транспортными протоколами).

Семейство IPX/SPX

В семействе IPX/SPXпорты (называемые сокетами или гнёздами) появляются в протоколе сетевого уровня IPX, обеспечивая обмендатаграммамимежду приложениями (операционная система резервирует часть сокетов для себя). Протокол SPX, в свою очередь, дополняет IPX всеми остальными возможностями транспортного уровня в полном соответствии с OSI.

В качестве адреса хоста IPX использует идентификатор, образованный из четырёхбайтного номера сети (назначаемого маршрутизаторами) и MAC-адреса сетевого адаптера.

Модель TCP/IP (5 уровней)

    Прикладной (5) уровень (Application Layer) или уровень приложений обеспечивает услуги, непосредственно поддерживающие приложения пользователя, например, программные средства передачи файлов, доступа к базам данных, средства электронной почты, службу регистрации на сервере. Этот уровень управляет всеми остальными уровнями. Например, если пользователь работает с электронными таблицами Excel и решает сохранить рабочий файл в своей директории на сетевом файл-сервере, то прикладной уровень обеспечивает перемещение файла с рабочего компьютера на сетевой диск прозрачно для пользователя.

    Транспортный (4) уровень (Transport Layer) обеспечивает доставку пакетов без ошибок и потерь, а также в нужной последовательности. Здесь же производится разбивка на блоки передаваемых данных, помещаемые в пакеты, и восстановление принимаемых данных из пакетов. Доставка пакетов возможна как с установлением соединения (виртуального канала), так и без. Транспортный уровень является пограничным и связующим между верхними тремя, сильно зависящими от приложений, и тремя нижними уровнями, сильно привязанными к конкретной сети.

    Сетевой (3) уровень (Network Layer) отвечает за адресацию пакетов и перевод логических имен (логических адресов, например, IP-адресов или IPX-адресов) в физические сетевые MAC-адреса (и обратно). На этом же уровне решается задача выбора маршрута (пути), по которому пакет доставляется по назначению (если в сети имеется несколько маршрутов). На сетевом уровне действуют такие сложные промежуточные сетевые устройства, как маршрутизаторы.

    Канальный (2) уровень или уровень управления линией передачи (Data link Layer) отвечает за формирование пакетов (кадров) стандартного для данной сети (Ethernet, Token-Ring, FDDI) вида, включающих начальное и конечное управляющие поля. Здесь же производится управление доступом к сети, обнаруживаются ошибки передачи путем подсчета контрольных сумм, и производится повторная пересылка приемнику ошибочных пакетов. Канальный уровень делится на два подуровня: верхний LLC и нижний MAC. На канальном уровне работают такие промежуточные сетевые устройства, как, например, коммутаторы.

    Физический (1) уровень (Physical Layer) – это самый нижний уровень модели, который отвечает за кодирование передаваемой информации в уровни сигналов, принятые в используемой среде передачи, и обратное декодирование. Здесь же определяются требования к соединителям, разъемам, электрическому согласованию, заземлению, защите от помех и т.д. На физическом уровне работают такие сетевые устройства, как трансиверы, репитеры и репитерные концентраторы.